't your APl is the answer, could
you please rephrase the question?

Ernst Naezer & Flavia Sequeira

nello

10 questions you ask
at the start of your API

5> To zoom out

51to zoom In

) qover

How much might | potentially lose?

After 3 year(s), | might lose €9,749 on the purchase : POTENTIAL LOSS WITHOUT GAP >
price of my vehicle in case of a total loss €9,749

| want to be covered for €10,000 -

o O

[
)
o You chose the product GAP Insurance - formula 3
o years
(&)
= : .
Buy now: €205.92 / year
Want a 10% discount?
Contact your broker or your car dealer. | | 4, 2 3 - 3 :

(1:.\ ’7) A'_zv’ J 'I'() :
£92.70 £344.70 Total price: €617.76

MY CAR

ABARTH 500 @ 12 £23,232.00 Start Date: 2017-05-03

Capture Your Shipment’s
Full Journey

Seamless Integration

Custom | elds enable seamless integration &]
with your existing SCM or ERP systems.

Monitor Shipments In-Transit

View active shipments current status, location, &
and triggered alerts at any time.

Access to Historical Data

A complete log of all your past shipments
enables detailed analysis.

|

10 questions you ask
at the start of your API

#1

WHAT IS OUR
DESIGN CHALLENGE?

problem
ultimate impact
possible solutions

context & constraints

How might we,

help Dutch and Belgium retail customers

to easily split their restaurant bill and request
payments from friends - so that the hassle of money
doesn't interfere with a good evening out?

#7

WHAT ARE OUR
TOP-LEVEL RESOURCES?

/details

/items

.lor]..
[appointments

/credit-cards/application

[current-accounts/transactions

“There are only two hard things In
Computer Science: cache
iInvalidation and naming things.”

-Phil Karlton

3

S OUR APl CORESIVE?

H

WHAT PRINCIPLES, POLICIES & VALUES
DO WE CODIFY?

May 25th 2018

#5

WE
HOW DO -
MONETIZE OUR AP

FREE, PAY-AS-YOU-GO, TIERED PRICING, FREEMIUM,
UNIT-BASED PRICING, TRANSACTION FEE, REVENUE
SHARING, COST-PER-CLICK, COST-PER-ACTION,
RECURRING REVENUE STREAMS, UP-SELL
OPPORTUNITY, INTERNAL USAGE AND MANY OTHERS

#6

WHICH DESIGN PERSPECTIVE
DO WE USE?

<<
|

Z

screen stage self

<
|

|\/—| screen
V_
V—

viewpoint of single application
often User Interface driven, guards a specific

AVNAFIANAA

some internal steps of the process are folded
enforce behavior for different applications
validation and messages match with the front end

$ post https://api.ing.nl/mobile/credit-card/requests
{name, telephone, email, home address}
> 201 Created

$ post https://api.ing.nl/mobile/credit-card/requests/Kid}/step
{monthly income, annual income}
> 200 OK

$ post https://api.ing.nl/mobile/credit-card/requestsKid}/step?2

{requested limit, card type, payment options}
> 200 OK

$ post https://api.ing.nl/mobile/credit-card/requestsKid}/step3
> 200 OK

https://api.ing.nl/credit-card/requests
https://api.ing.nl/credit-card/requests/123/step1
https://api.ing.nl/credit-card/requests/123/step2
https://api.ing.nl/credit-card/requests/123/step3

@ stage

viewpoint of capturing the essence

maximum flexibility, enables multiple experiences
comprises of logical units you update

little to no notion of time

can be used with multiple interaction patterns

$ post https://api.ing.nl/credit-card/requests
> 201 Created

$ patch https://api.ing.nl/credit-card/requests/Kid}
{name, telephone, email, home address}
> 200 OK

$ patch https://api.ing.nl/credit-card/requests/Kid}
{monthly income, requested limit, card type, payment options}
> 200 OK

..[repeat]..

$ post https://api.ing.nl/credit-card/requestsKid}
> 201 Created

https://api.ing.nl/credit-card/requests
https://api.ing.nl/credit-card/requests/123
https://api.ing.nl/credit-card/requests/123
https://api.ing.nl/credit-card/requests/123/submit

Q self

viewpoint of internal processes

exposes various states and intermediate steps
behaves CRUD like or chatty
references system specifics, often with magic

NniMmMhare

offers great level of control

$ post https://api.ing.nl/credit-card/requests
> 201 Created

$ post https://api.ing.nl/credit-card/requests/Kid}/bkr-toets
> 200 OK

$ post https://api.ing.nl/credit-card/requests/{id}/check-income
> 200 OK

$ post https://api.ing.nl/credit-card/requests/id}/assess-risk
> 200 OK

$ post https://api.ing.nl/credit-card/requests/id}/issue-card
> 200 OK

$ post https://api.ing.nl/credit-card/requests/Kid}/send-letter
> 200 OK

https://api.ing.nl/credit-card/requests
https://api.ing.nl/credit-card/requests/123/bkr-toets
https://api.ing.nl/credit-card/requests/123/check-income
https://api.ing.nl/credit-card/requests/123/calculate-risk
https://api.ing.nl/credit-card/requests/123/issue-card
https://api.ing.nl/credit-card/requests/123/issue-card

#/

WHAT SYSTEMS
DO WE NEED FOR OUR API?

Existing application traffic:
End Users HTTP/HTTPS Machine Agent/
Analytitlzs Agent
n e HTTP(S): 9080
Web and Mobile
RUM Agents

RUM beacons
via existirg
HTTPS or HTTP

D‘ﬁ ﬁ
plugln

Controller Infrastructure

HTTP(S): 8090 or 443
=

AppDynamics Users

Primary Controller

Report Service:
HTTP(S):
8020 or 8021

QQ HTTP(S): 8090 or 443

DB Agent

HTTP(S): 80€0 or 443

W= e -

Built-in Events

REST API e

CB Monitoring via
JDBC

Application Servers 0

App Server
Agent

HTTP(S): 8090 or 443

HTTP(S): 9080

Service:

HTTP(S): 090 or 443

Seconday
Coniroler for HA

— o ———— - ———— - — —]

L

I

I

I
P-“--—-T---"-"

Events Service Cluster

HTTP(S) 9080

5 °H‘I‘I‘P(S\:

f 7001 or 7002
HTTP(S): ; "
7001 or 7002 HTTP(S): 7001 or 7002 TCP: 3388
- : B
5 HTTP(S): 9080

Reverse Proxy ’ EUM Server

- - m— m- =

HTTP: 9080
HTTP: 9080 l

TCP:2181 TCP: 2181

e blog] o

TCP: 2181

Node1 Node 2 Node 3

— e ——— o — -

#8

WHAT NEEDS TO SCALE,
AND BY HOW MUCH?

#9

HOW DO WE o
EVOLVE OUR .

#10

HOW DO WE MEASURE
OUR ULTIMATE IMPACT?

$ cat ./api-start-deck.md | grep #

#1 what is our design challenge

#2 what are our top-level resources?

#3 Is our API cohesive?

#4 what principles, policies & values do we codify?
#5 how do we monetize our API?

#6 which design perspective do we use?

#7 what systems do we need for our API?

#8 what needs to scale, and by how much?

#9 how do we evolve our API1?

#10 how do we measure our ultimate impact?

$_

Good APIs don’t happen by accident

