
Nathaniel T. Schutta
@ntschutta

Production	Hardened	Services

Ah services!

Service all the things!

Seems like everything is
aaS these days…

Infrastructure. Container. Platform.
Software. Function. Pizza.

Pretty sure about that last one…

Architecture as a Service…

How many services do *you*
have in your world these days?

Turns out, microservices
aren’t a panacea!

It can be a real challenge to maintain
a healthy micro(services)biome.

Should we just go back to monoliths
we release semiannually?

Is it too late to change careers?

All services are equal. Some services
are more equal than others.

Defining our SLOs is a critical step
towards production hardened services.

Availability is one of our most
important objectives.

What is the availability goal
for this specific service?

Everyone wants 99.999%.

Everyone wants hot/hot.

Until they see the price tag.

If you have to ask…

— Susan J. Fowler 
Production-Ready Microservices

When	we	refer	to	an	application	or	
microservice	as	“production-ready,”	we	
confer	a	great	deal	of	trust	upon	it:	we	
trust	it	to	behave	reasonably,	we	trust	it	
to	perform	reliably,	we	trust	it	to	get	the	
job	done…

How do we know we
can trust a service?

Consider having a checklist.

A checklist? Seriously?

http://atulgawande.com/book/the-checklist-manifesto/

You know who uses checklists?

Pilots. Surgeons.

Should be quantifiable and measurable.

“Fast” won’t cut it.

Stability.

Reliability.

Scalability.

Fault tolerance.

Performance.

Monitoring.

Documentation.

I know what some of you are thinking…

I don’t have time for all this.

We need to MOVE FAST.
And break things…

We’re Agile. With a capital A.

How is your velocity when an outage
brings your business to a halt?

Requires buy in from the grass roots
level as well as management.

Stable and Reliable.

Our services are evolving. Constantly.

Feature not a bug.

Development moves quickly.

Always Be Releasing.

Bit like spinning plates…

Just takes one wobble to take
down the entire system.

How do we make sure our services
are stable and reliable?

Consistent development process.

Code passes new and existing tests
before committing code.

Pair programming. Code reviews.

External, automated build system.

Build pipeline.

Feature toggles.

Thorough testing.

Linting, unit tests, regression tests,
integration tests, etc.

Deployment pipeline.

Must have a standardized
deployment process.

Staging, canary, blue/green deploys.

Find issues *before* our service
hits production servers.

Staging - exact copy of production.

Real world without real world traffic.

Capacity is often a
percentage of production.

Though some organizations have
identical prod/staging hardware.

Staging is the real deal.

Code should have already
passed all our internal checks.

Unit tests, linting, QA,
customer acceptance etc.

If it checks out in staging, it is going
to canary - with real traffic.

Canary - aka the canary
in the coal mine.

Find out if we have issues before we
do a full production push.

Some percentage of
production - 5% or 10%.

Can be a sliding scale too - start with
5%, move up to 20% etc.

Canaries are serving real
production traffic.

Find errors? Automated rollbacks.

How long should our canary stage
last? As long as it takes. Hours. Days.

¯_(ツ)_/¯

https://twitter.com/KentBeck/status/596007846887628801

How about replacing
merge on GitHub.

On the fly.

How much do you agonize
over a CSS change?

At this point, we should have
very few production issues.

Most likely, we’ve found the
problems in staging, canary, etc.

Your deployment pipeline should be
the path to production. Period.

Avoid the temptation to
perform hotfixes.

— Susan J. Fowler 
Production-Ready Microservices

Bypassing	the	initial	phases	of	the	
deployment	pipeline	often	introduces	
new	bugs	into	production,	as	
emergency	code	fixes	run	the	risk	of	not	
being	properly	tested.

I’ve seen that movie…

Rollback to the last stable build.

Must also understand our dependencies.

And plan for their inevitable failure.

Dependency graphs get kind of crazy.

ht
tp

://
ev

ol
ut

io
na

ry
ar

ch
ite

ct
ur

e.
co

m

“Death Star Architecture.”

https://www.slideshare.net/adriancockcroft/goto-berlin

How do we mitigate a
dependency failure?

Caching. Alternative services. Backups.

Depends on the criticality.

Insureds will submit claims
during a natural disaster.

Better be able to accept the claim.

But we might not work
on it immediately.

Maybe we need to post messages to
a queue, process when we’re up.

Our services should
have a health check.

Always Be (health) Checking.

Not healthy? Don’t route traffic to it.

Circuit breakers for fun and profit.

Defend the neighborhood as it were.

Services won’t live forever.
Plan for decommissioning.

Need a deprecation period.

Typically more a cultural
issue than a technical one.

Monitoring is key - are we still seeing
calls to the old endpoint?

Don’t just abandon a service!

Scalable.

We need to know the
growth scale of our service.

How many requests can we
handle per second? RPS.

We can look at current load levels.

We can (and should!)
perform load tests.

Potential fitness function…

Very important but we need to look
beyond just our service.

A given service is just one
part of a larger world.

What is the qualitative growth scale?

Linked to our business.

Do we need to scale by the number
of users? Number of orders?

Isn’t tied to a particular service!

We will need to talk to our business
partners to understand the drivers.

We will have to translate
those to our specific services.

Accurate growth scales are vital.

All services are equal. Some services
are more equal than others.

Business critical services
should have priority.

Resource isolation is your friend…
shared hardware hurts.

May want to engage in some
capacity planning.

Ensure we have sufficient budget.

Or change your process…

Don’t neglect your dependencies.

Can they scale with you?

Better make sure they can!

Collaborate. Communicate.

Have a scalability review with the
services you rely on.

What does your data growth look like?

What type of database makes the
most sense? Relational? NoSQL?

Is eventual consistency ok?

Are you read heavy? Write heavy?

How do we scale our database?

cf scale FOO doesn’t exempt us
from thinking through scalability.

Fault Tolerant.

We can’t prevent catastrophes. But
we can build failure resistant services.

Hope for the best…
prepare for the worst.

— ROBERT MCMILLAN

Hamilton	wanted	to	add	error-checking	
code	to	the	Apollo	system	that	would	
prevent	this	from	messing	up	the	systems.	
But	that	seemed	excessive	to	her	higher-
ups.	“Everyone	said,	‘That	would	never	
happen,’”	Hamilton	remembers.	
But	it	did.	Right	around	Christmas	1968.

https://www.wired.com/2015/10/margaret-hamilton-nasa-apollo/

Failures, uh find a way.

Eliminate single points of failure!

Not sure what they might be?

Draw up the architecture.

What happens if *this* fails?

It can’t fail? Yeah it can - what
happens if it does?

Think through how
our service could fail.

It is hard. We are really good at
thinking through the happy path.

But we need to think about
the road less traveled.

Test for these failure scenarios. Does
our service respond appropriately?

Only one way to really know…

ht
tp

s:
//

gi
th

ub
.c

om
/N

et
fli

x/
Si

m
ia

nA
rm

y

Chaos engineering.

http://principlesofchaos.org

Intentionally break things.

Add latency.

Shut down an availability zone.

Kill a machine.

Shouldn’t be ad hoc! Monitor and log.

Chaos can go rogue…

Some things will fall through
the proverbial cracks.

Need to detect failures.

And add them to our testing suite.

Failures could be internal or external.

How is your exception handling?

Code will have bugs. Test thoroughly.

Extremely common for a dependency
to cause our service to fail!

Downstream service…or a
3rd party library.

How does your service
recover from a failure?

Resiliency testing.

Make your service fail. Repeatedly.

Load testing. But we covered that!

Where do you run your load tests?

Staging?

Good place to start…however it isn’t
the same as testing in production.

— Sam Newman
Building Microservices

…an	ecommerce	company	that	
accidentally	ran	its	tests	against	its	
production	ordering	systems.	It	didn’t	
realize	its	mistake	until	a	large	number	
of	washing	machines	arrived	at	the	
head	office.

Synthetic transactions.

And be sure everyone knows
when you’re doing it.

Especially downstream dependencies!

Load testing shouldn’t be a one off.

Can be automated and run on a cadence.

Probably not during your peek
traffic hours mind you…

Ultimate goal - reduce the
impact on our users.

Roll back.

Fail over.

Automate, automate, automate.

All services are equal. Some services
are more equal than others.

What is the impact of
this service failing?

Categorize incidents and
outages by severity and scope.

Severity - impact to the business.

Scope - how much of the
business is impacted?

Monitored.

Four components to monitoring.

Logging.

What would you say
my service is doing?

Log anything that is useful.

Just don’t put in any personally
identifying information (PII).

Ever.

Some things alone aren’t PII but
when combined with other items…

Tracing can be difficult.
Correlation IDs help.

Dashboards.

View the health of a service.

More on this in a minute!

Alerting.

A key metric is out of band.

Allows us to detect an issue and fix it
before our customers even notice.

Pager duty.

Must be sustainable.

Provide clear, concise on
call documentation.

Vital that we think about just what
we should be monitoring.

What *is* a key metric?

Some pertain solely to the
infrastructure our service runs on.

CPU utilization, RAM utilization,
threads, database connections…

These often impact more
than just our service.

Others key metrics are
specific to our service.

Additionally we need to know the
availability, latency, response time…

Basically anything that we identified
earlier as part of our SLO.

Monitor errors and exceptions as well.

Identify normal, warning and critical
thresholds for your metrics.

Can be hard to figure out early on.
Need a certain amount of history.

Not just a prod thing. We need to
monitor staging. Validates the monitors.

Metrics should be displayed on a
dashboard of some sort.

But we should be alerted when
things start to go wonky.

We shouldn’t be staring at our
dashboards all day!

Alert on all of our key metrics, SLOs etc.

Absence of a key metric is
also an avertable offense!

Alerts should be actionable.

Create an on call book to assist team
monitoring the service.

How to mitigate, resolve, etc.

Step by step instructions.
Do not make asumptions.

Follow the 3 AM Rule.

Write it assuming the person
reading will be half asleep.

Do not be clever. Think simple.

— Archilochus

We	don't	rise	to	the	level	of	our	
expectations,	we	fall	to	the	level	of	our	
training.

https://mobile.twitter.com/walfieee/status/953848431184875520

This all implies an on call rotation.

Sorry.

Everyone should do it. Rotations
need to be sustainable.

Pair up.

One week or less with at least a
month off in between.

One developer on call for 3 years?

Not so much.

Documented.

What does your service do?

How does it work?

What does it depend on?

Ever say something like “the
documentation is useless”?

It doesn’t have to be.

Golden rule!

Do it for those that come after you.

Don’t forget, sometimes *you* are
the person that comes after you!

How long does it take for a new team
member to be productive? Weeks?

Months?

Solid onboarding guide.

Make sure it is updated.

Documentation should be easy to find.

Probably a website/wiki.

Updating the wiki should be a normal
part of the developer workflow.

Consider a simple (low
ceremony) template.

Description - what does your service
do? Don’t skimp here.

An architectural diagram or three.

Contact information as
well as the on call rotation.

Links to helpful things like the repo,
dashboard link, on call book.

FAQ.

Onboarding/development guide.

Coding standards.

Development pipeline.

Whatever helps the team understand.

Everyone should “get it” and be able
to describe it. So have them do it.

Shouldn’t be a static thing!

Documentation should be reviewed
along with the architecture.

Production Readiness Reviews.

Not a one time, up front thing.

Services should be reviewed
and audited regularly.

Does not have to be high ceremony!

Get the team together - SREs, Devs,
etc. Draw up the architecture.

Do we have a shared understanding
of what the system does?

Do we have a shared understanding
of our requirements?

As we talk through it, we will
discover bottlenecks.

The Wombat service has a lower
availability level than we need.

We will find interesting failure cases.

“When month end falls on the
Super Blue Blood Moon.”

Review should result in a new
architecture diagram or two.

And probably some new
items on the backlog.

Perform an audit.

Go back to your checklist. Does the
service meet our requirements?

Probably results in some new
things in our backlog!

Now we can create a
production readiness roadmap.

What do we need to fix and
when can/should we fix it.

Drive prioritization of the work.

A lot of this is manual. But
some of it can be automated!

ht
tp

://
ev

ol
ut

io
na

ry
ar

ch
ite

ct
ur

e.
co

m

Fitness functions!

Basically, a set of tests we execute
to validate our architecture.

How close does this particular design
get us to our objectives?

Ideally, all automated. But we may
need some manual verifications.

For example…

All service calls must
respond within 100 ms.

Cyclomatic complexity
shall not exceed X.

Hard failure of an application will
spin up a new instance.

Reviews and audits should
not be additional red tape.

Should not be overly bureaucratic.

Couple of hours…depending on the
complexity of the system.

Next steps.

Check your culture.

Work on that checklist.

Review some services!

Adapt and change.

Good luck!

Questions?

Nathaniel	T.	Schutta
@ntschutta

Thanks!
I’m a Software

Architect,
Now What?

with Nate Shutta

Modeling for
Software

Architects
with Nate Shutta

Presentation
Patterns

with Neal Ford & Nate Schutta

