Production Hardened Services

Nathawntel T. Schutta
@wntschutta

Ah services!

Service all the things!

Seems like everything is
aas these days...

Infrastructure. Container. Platform.
Software. Function. Pizza.

Pretty sure about that last one...

Architecture as a Service...

How many services do *you®
have in your world these days?

Turns out, microservices
arent a panacea!

It can be a real challenge to maintain
a healthy micro(services)biome.

Should we just go back to monoliths
we release semiannually?

|s it too late to change careers?

All services are equal. Some services
are more equal than others.

Defining our SLOs is a critical step
towards production hardened services.

Availability is one of our most
important objectives.

What is the availability goal
for this specific service?

Everyone wants 99.999%.

Everyone wants hot/hot.

Until they see the price taq.

If you have to ask...

When we refer to an application or
microservice as “production-ready,” we
confer a great deal of trust upon it: we
trust it to behave reasonably, we trust it
to perform reliably, we trust it to get the
job done...

— Susaw). Fowler
Production-read Y MLeroservices

How do we know we
can trust a service?

Consider having a checklist.

A checklist? Seriously?

IMES BESTSELLER

CHECKLIST

HOW TO GET THINGS RIGHT

FICA2DE

http://atulgawande.com/book/the-checklist-manifesto/

You know who uses checklists?

Pilots. Surgeons.

Should be quantifiable and measurable.

“Fast” won't cut it.

Stability.

Reliability.

Scalability.

Fault tolerance.

Performance.

Monitoring.

Documentation.

| know what some of you are thinking...

| don’t have time for all this.

We need to MOVE FAST.
And break things...

We're Agile. With a capital A.

How is your velocity when an outage
brings your business to a halt?

Requires buy in from the grass roots
level as well as management.

Stable and Reliable.

Our services are evolving. Constantly.

Feature not a buqg.

Development moves quickly.

Always Be Releasing.

Bit like spinning plates...

Just takes one wobble to take
down the entire system.

How do we make sure our services
are stable and reliable?

Consistent development process.

Code passes new and existing tests
before committing code.

Pair programming. Code reviews.

External, automated build system.

Build pipeline.

Feature toggles.

Thorough testing.

Linting, unit tests, regression tests,
Integration tests, etc.

Deployment pipeline.

Must have a standardized
deployment process.

Staging, canary, blue/green deploys.

Find issues *before™ our service
hits production servers.

Staging - exact copy of production.

Real world without real world traffic.

Capacity is often a
percentage of production.

Though some organizations have
identical prod/staging hardware.

Staging is the real deal.

Code should have already
passed all our internal checks.

Unit tests, linting, QA,
customer acceptance etc.

If it checks out in staging, it is going
to canary - with real traffic.

Canary - aka the canary
in the coal mine.

Find out if we have issues before we
do a full production push.

Some percentage of
production - 5% or 10%.

Can be a sliding scale too - start with
5%, move up to 20% etc.

Canaries are serving real
production traffic.

Find errors? Automated rollbacks.

How long should our canary stage
last? As long as it takes. Hours. Days.

é -+ Kent Beck @
\\; @KentBeck

any decent answer to an interesting question
begins, "it depends..."

10:45 AM - 6 May 2015

540 Retweets 380Lkes PO B I E P E S 3

O 18 1) 540) 380

Follow ||| 4

https://twitter.com/KentBeck/status/506007846887628801

How about replacing
merge on GitHub.

On the fly.

ou® < []:I (o] Q= # githubengineering.com G (4] * t o [

GitHub Engineering

,Move Fast and Fix Things

(¢lvmg [December 15, 2015

Anyone who has worked on a large enough codebase knows that technical debt is an
inescapable reality: The more rapidly an application grows in size and complexity, the more
technical debt is accrued. With GitHub’s growth over the last 7 years, we have found
plenty of nooks and crannies in our codebase that are inevitably below our very best
engineering standards. But we've also found effective and efficient ways of paying down
that technical debt, even in the most active parts of our systems.

At GitHub we try not to brag about the “shortcuts” we’ve taken over the years to scale our
web application to more than 12 million users. In fact, we do quite the opposite: we make
a conscious effort to study our codebase looking for systems that can be rewritten to be
cleaner, simpler and more efficient, and we develop tools and workflows that allow us to
perform these rewrites efficiently and reliably.

As an example, two weeks ago we replaced one of the most critical code paths in our
infrastructure: the code that performs merges when you press the Merge Button in a Pull
Request. Although we routinely perform these kind of refactorings throughout our web
app, the importance of the merge code makes it an interesting story to demonstrate our
workflow.

Merges in Git

We’ve talked at length in the past about the storage model that GitHub uses for
repositories in our platform and our Enterprise offerings. There are many implementation
details that make this model efficient in both performance and disk usage, but the most
relevant one here is the fact that repositories are always stored “bare”.

This means that the actual files in the repository (the ones that you would see on your
working directory when you clone the repository) are not actually available on disk in our
infrastructure: they are compressed and delta’ed inside packfiles.

Because of this, performing a merge in a production environment is a nontrivial endeavour.
Git knows several merge strategies, but the recursive merge strategy that you'd get by
default when using git merge to merge two branches in a local repository assumes the

avietanna nf a winrlriina traa far tha ranncitan: with all tha filae rhankad At an it

How much do you agonize
over a CSS change?

At this point, we should have
very few production issues.

Most likely, we've found the
problems in staging, canary, etc.

Your deployment pipeline should be
“the* path to production. Period.

Avoid the temptation to
perform hotfixes.

Bypassing the initial phases of the
deployment pipeline often introduces
new bugs into production, as
emergency code fixes run the risk of not
being properly tested.

— Susaw). Fowler
Production-read Y MLeroservices

|'ve seen that movie...

Rollback to the last stable build.

Must also understand our dependencies.

And plan for their inevitable failure.

Dependency graphs get kind of crazy.

WO>9IN1DIYDIeATeUONN[OAS//-d1Y

_—
Ya

TN m

“*Death Star Architecture/

https://www.slideshare.net/adriancockcroft/goto-berlin

How do we mitigate a
dependency failure?

Caching. Alternative services. Backups.

Depends on the criticality.

Insureds will submit claims
during a natural disaster.

Better be able to accept the claim.

But we might not work
on it immediately.

Maybe we need to post messages to
a queue, process when we're up.

Our services should
have a health check.

(o] @ & docs.spri{\gjio C

Part V. Spring Boot Actuator: Production-ready features

Spring Boot includes a number of additional features to help you monitor and manage your application when it's pushed to production. You can choose to manage and
monitor your application using HTTP endpoints, with JMX or even by remote shell (SSH or Telnet). Auditing, health and metrics gathering can be automatically applied to

your application.

Actuator HTTP endpoints are only available with a Spring MVC-based application. In particular, it will not work with Jersey unless you enable Spring MVC as well.

46. Enabling production-ready features

The 'spring-boot-actuator module provides all of Spring Boot's production-ready features. The simplest way to enable the features is to add a dependency to the

spring-boot-starter-actuator ‘Starter’.

Definition of Actuator

An actuator is a manufacturing term, referring to a mechanical device for moving or controlling something. Actuators can generate a large amount of motion from a
small change.

To add the actuator to a Maven based project, add the following ‘Starter’ dependency:

<dependencies>
<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
</dependencies>

For Gradle, use the declaration:

dependencies {
compile(“org.springframework.boot:spring-boot-starter-actuator")

}

47. Endpoints

Actuator endpoints allow you to monitor and interact with your application. Spring Boot includes a number of built-in endpoints and you can also add your own. For
example the health endpoint provides basic application health information.

The way that endpoints are exposed will depend on the type of technology that you choose. Most applications choose HTTP monitoring, where the ID of the endpoint is
mapped to a URL. For example, by default, the health endpoint will be mapped to /health.

The following technology agnostic endpoints are available:

Always Be (health) Checking.

Not healthy? Don’t route traffic to it.

Circuit breakers for fun and profit.

||O

le
i
|

l

Nl

HYSTRIX

DEFEND YOUR APP

Hystrix: Latency and Fault Tolerance for Distributed
Systems

0SS Lifecycle |inaccessible

build failing License Apache 2

Hystrix is a latency and fault tolerance library designed to isolate points of access to remote systems, services and 3rd
party libraries, stop cascading failure and enable resilience in complex distributed systems where failure is inevitable.

Full Documentation

See the Wiki for full documentation, examples, operational details and other information.
See the Javadoc for the API.

Communication

¢ Google Group: HystrixOSS
o Twitter: @HystrixOSS
e GitHub Issues

What does it do?

1) Latency and Fault Tolerance

Stop cascading failures. Fallbacks and graceful degradation. Fail fast and rapid recovery.

Thread and semaphore isolation with circuit breakers.

2) Realtime Operations

Defend the neighborhood as it were.

Services won't live forever.
Plan for decommissioning.

Need a deprecation period.

Typically more a cultural
issue than a technical one.

Monitoring is key - are we still seeing
calls to the old endpoint?

Don’t just abandon a service!

Scalable.

We need to know the
growth scale of our service.

How many requests can we
handle per second? RPS.

We can look at current load levels.

We can (and should!)
perform load tests.

Potential fitness function...

Very important but we need to look
beyond just our service.

A given service is just one
part of a larger world.

What is the qualitative growth scale?

Linked to our business.

Do we need to scale by the number
of users? Number of orders?

Isn’t tied to a particular service!

We will need to talk to our business
partners to understand the drivers.

We will have to translate
those to our specific services.

Accurate growth scales are vital.

All services are equal. Some services
are more equal than others.

Business critical services
should have priority.

Resource isolation is your friend...
shared hardware hurts.

May want to engage In some
capacity planning.

Ensure we have sufficient budget.

Or change your process...

Don’t neglect your dependencies.

Can they scale with you?

Better make sure they can!

Collaborate. Communicate.

Have a scalability review with the
services you rely on.

What does your data growth look like?

What type of database makes the
most sense? Relational? NoSQL?

|s eventual consistency ok?

Are you read heavy? Write heavy?

How do we scale our database?

ct scale FOO0 doesn't exempt us
from thinking through scalability.

Fault Tolerant.

We can’t prevent catastrophes. But
we can build failure resistant services.

Hope for the best...
prepare for the worst.

® o

0Ol ®I= @ wired.com

|G

444
444
444

(WEER D

Her Code Got Humans on the Moon—And Invented Software Itself

ROBERT MCMILLAN BUSINESS 10.13.15 7:00 AM

HER CODE GOT HUMANS ON THE MOON—AND
INVENTED SOFTWARE ITSELF

AR

g

3

B
1
7

M};?:&:iti

X

12;
4

4
f3is

:,5:(

&

)
0
R

SUBSCRIBE

Je

Hamilton wanted to add error-checking
code to the Apollo system that would
prevent this from messing up the systems.
But that seemed excessive to her higher-
ups. “"Everyone said, ‘That would never
happen,” Hamilton remembers.

But it did. Right around Christmas 1968.

— ROBERT MCMILLAN

https://www.wired.com/2015/10/margaret-hamilton-nasa-apollo/

Failures, uh find a way.

Eliminate single points of failure!

Not sure what they might be?

Draw up the architecture.

What happens if “this™ fails?

It can’t fail? Yeah it can - what
happens if it does?

Think through how
our service could fail.

It is hard. We are really good at
thinking through the happy path.

But we need to think about
the road less traveled.

Test for these failure scenarios. Does
our service respond appropriately?

Only one way to really know...

https://qithub.com/Netflix/SimianArmy

Chaos engineering.

http://principlesofchaos.org

Intentionally break things.

Add latency.

Shut down an availability zone.

Kill a machine.

Shouldn’t be ad hoc! Monitor and loqg.

Chaos can go roque...

Some things will fall through
the proverbial cracks.

Need to detect failures.

And add them to our testing suite.

Failures could be internal or external.

How is your exception handling?

Code will have bugs. Test thoroughly.

Extremely common for a dependency
to cause our service to fail!

Downstream service...or a
3rd party library.

How does your service
recover from a failure?

Resiliency testing.

Make your service fail. Repeatedly.

Load testing. But we covered that!

Where do you run your load tests?

Staging?

Good place to start...however it isn’t
the same as testing in production.

i

o0 ® | 0O ©
wieTinFowLee.COM

Intro Videos Design Agile Refactoring FAQ About Me All Sections= T

& martinfowler.com

QA in Production

04 April 2017 Contents
Rouan Wilsenach Gathe_y(ing producti(_)n Qata
Critical success indicators
Rouan is a software Logging
developer. He spent a Metrics
number of years working APls
as a consultant, including Learning from production data
at ThoughtWorks, Alerting
developing applications for clients in the Dashboards
financial services, health, media and A QA approach rooted in reality
education sectors. He now wqus Tests need to earn their keep
remafalyfor Tes, whers he hullds adftyare Are you ready to adopt production QA practices?
to help teachers and schools. He likes Finding the right balance

writing and speaking at conferences.
Find similar articles to this by looking
at these tags: continuous delivery -
testing

Gathering operational data about a system is common practice, particularly metrics that
indicate system load and performance such as CPU and memory usage. This data has
been used for years to help teams who support a system learn when an outage is
happening or imminent. When things become slow, a code profiler might be enabled in
order to determine which part of the system is causing a bottleneck, for example a slow-
running database query.

I've observed a recent trend that combines the meticulousness of this traditional
operational monitoring with a much broader view of the quality of a system. While
operational data is an essential part of supporting a system, it is also valuable to gather
data that helps provide a picture of whether the system as a whole is behaving as
expected. | define “QA in production” as an approach where teams pay closer attention
to the behaviour of their production systems in order to improve the overall quality of the

function these systems serve.
Traditionally, QA focuses on
testing the software before

release into production, to see if
! it's ready for release

& =8 w8 e O

)

[EF

...an ecommerce company that
accidentally ran its tests against its
production ordering systems. It didn't
realize its mistake until a large number

of washing machines arrived at the
head office.

— Sam Newwaw
Butlding Mieroservices

Synthetic transactions.

And be sure everyone knows
when you’re doing it.

Especially downstream dependencies!

Load testing shouldn’t be a one off.

Can be automated and run on a cadence.

Probably not during your peek
traffic hours mind you...

Ultimate goal - reduce the
Impact on our users.

Roll back.

Fail over.

Automate, automate, automate.

All services are equal. Some services
are more equal than others.

What is the impact of
*this™ service failing?

Categorize incidents and
outages by severity and scope.

Severity - impact to the business.

Scope - how much of the
business is impacted?

Monitored.

Four components to monitoring.

Logging.

What would you say
my service is doing?

Log anything that is useful.

Just don’t put in any personally
identifying information (PII).

Ever.

Some things alone aren’t Pll but
when combined with other items...

Tracing can be difficult.
Correlation IDs help.

Dashboards.

View the health of a service.

More on this in a minute!

Alerting.

A key metric is out of band.

Allows us to detect an issue and fix it
before our customers even notice.

Pager duty.

Must be sustainable.

Provide clear, concise on
call documentation.

Vital that we think about just what
we should be monitoring.

What “is* a key metric?

Some pertain solely to the
infrastructure our service runs on.

CPU utilization, RAM utilization,
threads, database connections...

These often impact more
than just our service.

Others key metrics are
specific to our service.

Additionally we need to know the
availability, latency, response time...

Basically anything that we identified
earlier as part of our SLO.

Monitor errors and exceptions as well.

ldentify normal, warning and critical
thresholds for your metrics.

Can be hard to figure out early on.
Need a certain amount of history.

Not just a prod thing. We need to
monitor staging. Validates the monitors.

Metrics should be displayed on a
dashboard of some sort.

PCF Metrics | fortune-ui X

Matthew

C' | £ https://metrics.run.pivotal.io/apps/ff713209-ad5d-4b6e-bfe1-0829d7f3ac68/network

fortune-ui

DASHBOARD CONTAINER METRICS NETWORK METRICS

20

15

10

TLMOYSA=OGEOBEO +0@O6 =

ORG: platform-eng SPACE: nfjs-workshop STATUS: @ Running

B NETWORK REQUESTS [l ERRORS [l LATENCY

0

F 4

20ms

15ms

10ms

5ms M/\/—\A _

Oms

04:08:05 PM 04:08:15 04:08:25
4/18/2016

04:08:45 04:08:55 04:09:05 PM
4/18/2016

[] ® < M (o] ® % metrics.run.pivotal.io (@] (4] * t (] =

Search for Application

spo-ring-todo ORG: app[0] SPACE: spo-ring-homework STATUS: ® Running Oct4,9:16 am — Oct 5,9:16 am (loca
: “ e “‘ ‘ ¥ ‘ 26 ‘ : : “ i e “ 3 ‘ ; ".v(2 : A\‘(‘r‘(A ‘.‘x‘l 5
DASHBOARD LS view instances
C(.SyStEI“Ja[en(y cf.system.request-count cf system.request-error-count
15
(‘\ 1 ‘\\ m ipm [4 1 i (m 3 ‘t{ 2 f
cf.system.cpu cf.system.disk cf.system.memory

10am 12pm 2pm 4pm 6pr pm 10 pm Oct 2am 6am am

cf.system.events

Fail [@Update @ Stop EStart ESSH

@ Crash

LOGS

o
©
i

Medium S

mattklein123 ‘[,,‘7 :\
Engineer @Iyft

Oct 25 4 min read

Front/edge Envoy per-host row

I've given quite a few talks about observability in the age of the service mesh
(most recent slides, unfortunately this talk series has not been recorded yet).
Visibility into the inherently unstable network is one of the most important
thing that Envoy provides and I'm asked repeatedly for the source of the
dashboards that we use at Lyft. In the interest of “shipping” and getting

something out there that can help folks, we are releasing a snapshot of our

internal Envoy dashboards.

What we are releasing is unfortunately not going to be readily consumable. It
is also not an OSS project that will be maintained in any way. The goal is to
provide a snapshot of what Lyft does internally (what is on each dashboard,
what stats do we look at, etc.). Our hope is having that as a reference will be

useful in developing new dashboards for your organization.

) 107 Q

S

7 (7 M) Next story)
@ A Coworkers Will Become Custo...

But we should be alerted when
things start to go wonky.

We shouldn’t be staring at our
dashboards all day!

Alert on all of our key metrics, SLOs etc.

Absence of a key metric is
also an avertable offense!

Alerts should be actionable.

Create an on call book to assist team
monitoring the service.

How to mitigate, resolve, etc.

Step by step instructions.
Do not make asumptions.

Follow the 3 AM Rule.

Write it assuming the person
reading will be half asleep.

Do not be clever. Think simple.

We don't rise to the level of our
expectations, we fall to the level of our
training.

— Archtlochus

@\"% gj/:lfieee -
escape room concept:

- you are a software engineeer

- there is a production issue related to a legacy
codebase

- no one knows how it works

- various credentials are scattered around the office on
post-it notes

- there's some printouts of git diffs

- you have an hour to fix this

10:36 PM - Jan 17, 2018

4,707 Retweets 10,039 Likes

https://mobile.twitter.com/walfieee/status/953848431184875520

This all implies an on call rotation.

Sorry.

Everyone should do it. Rotations
need to be sustainable.

Pair up.

One week or less with at least a
month off in between.

One developer on call for 3 years?

Not so much.

Documented.

What does your service do?

How does it work?

What does it depend on?

Ever say something like “the
documentation is useless”?

It doesn’t have to be.

Golden rule!

Do it for those that come after you.

Don’t forget, sometimes “you™ are
the person that comes after you'!

How long does it take for a new team
member to be productive? Weeks?

Months?

Solid onboarding quide.

Make sure it is updated.

Documentation should be easy to find.

Probably a website/wiki.

Updating the wiki should be a normal
part of the developer workflow.

Consider a simple (low
ceremony) template.

Description - what does your service
do? Don't skimp here.

An architectural diagram or three.

Contact information as
well as the on call rotation.

Links to helpful things like the repo,
dashboard link, on call book.

FAQ.

Onboarding/development guide.

Coding standards.

Development pipeline.

Whatever helps the team understand.

Everyone should “get it” and be able
to describe it. SO have them do it.

Shouldn’t be a static thing!

Documentation should be reviewed
along with the architecture.

Production Readiness Reviews.

Not a one time, up front thing.

Services should be reviewed
and audited reqularly.

Does not have to be high ceremony!

Get the team together - SREs, Devs,
etc. Draw up the architecture.

Do we have a shared understanding
of what the system does?

Do we have a shared understanding
of our requirements?

As we talk through it, we will
discover bottlenecks.

The Wombat service has a lower
availability level than we need.

We will find interesting failure cases.

*When month end falls on the
Super Blue Blood Moon”

Review should result in a new
architecture diagram or two.

And probably some new
items on the backlog.

Perform an audit.

Go back to your checklist. Does the
service meet our requirements?

Probably results in some new
things in our backlog!

Now we can create a
production readiness roadmap.

What do we need to fix and
when can/should we fix it.

Drive prioritization of the work.

A lot of this is manual. But
some of it can be automated!

Building
kvolutionary
Architectures

- LI

Neal Ford, Rebecca Parsons & Patrick Kua

http://evolutionaryarchitecture.com

Fitness functions!

Basically, a set of tests we execute
to validate our architecture.

How close does this particular design
get us to our objectives?

Ideally, all automated. But we may
need some manual verifications.

For example...

All service calls must
respond within 100 ms.

Cyclomatic complexity
shall not exceed X.

Hard failure of an application will
spin up a new Instance.

Reviews and audits should
not be additional red tape.

Should not be overly bureaucratic.

Couple of hours...depending on the
complexity of the system.

Next steps.

Check your culture.

Work on that checklist.

Review some services!

Adapt and change.

Good luck!

Questions?

Thanks!

I'm a Software
Architect,
Now What?

with Nate Shutta

Presentation
Patterns

with Neal Ford & Nate Schutta

Modeling for
Software
Architects

with Nate Shutta

Nathaniel T. Schutta

April 16 & 17,2018
From developer to software architect
Presented by Nathaniel Schutta

@ntschutta

