APl

CONFERENCE

The Liferay case
Lessons learned evolving from

RPC to Hypermedia REST APIs

This slides are already available at

bit.ly/liferay-hypermedia-api

#
#
#
#

Who are
we?

We work for Liferay Inc

. / Alejandro Hernandez

oA\ ‘}‘

VP 9f Engineering / Softwqre Engineer |
o L\ A

Jorge Ferrer

#
#
#
#

#
#
#
#

Liferay is a software provider

Digital Experiences Platform Web, Mobile, ...

API

#
#
#
#

Key usages of APIs in Liferay
0 Integration (Cloud services, Legacy Apps, ...)

e Omni-channel consumers

e Web Applications

API

#
#
#
#

£ s

The beglnnlngs SOAP

#
#
#
#

Conclusions - The Good

v Enabled the possibility of integration with external
systems

v Easy to build APIs thanks to code generation from
Java APls

API

#
#
#
#

Conclusions - The Ugly

¥ Compatibility problems

¥ Hard to consume APlIs
X Strong dependency on tooling

= Poor adoption

API

#
#
#
#

#
#
#
#

'REST-API

mimim....

We mean RPC over HTTP

#
#
#
#

“REST"-API: JSON Web Services

e Automatic generation of an HTTP+JSON Web API
from a Java API

e Auto-generated interactive documentation

e Batch operations

API

#
#
#
#

-~

We were here seyanest £

! Level 3: Hypermedia Controls ’

Is that bad?

Level 0: The Swamp of POX

Level 1: Resources

Richardson Maturity Model - Martin Fowler

APl

CONFERENCE

#
#
#
#
https://martinfowler.com/articles/richardsonMaturityModel.html

Conclusions - The Good

v Very comprehensive, 90+% of the platform’s
functionalities

v More developer friendly

v/ Interactive docs, batch operations, ... were highly
appreciated = More adoption

API

#
#
#
#

Conclusions - The Ugly (1/2)

X Certain APls were very difficult to consume
e “Java-focused” objects did not match paradigms of all consumers

X Custom technology. Requires learning just for Liferay

API

#
#
#
#

Conclusions - The Ugly (2/2)

X Internal changes auto-propagated = Consumers were

broken in every release
e Unfeasible for public/partner APIs

X Increasingly perceived as bad/old APl in comparison
e ‘|t'snotREST”

API

#
#
#
#

We also tried a “competing” approach!

e AtomPub (With Shindig)
o Fully RESTful It failed to gain
o Atom XML any traction
e Mapping Layer
o Manual Coding

API

#
#
#
#

AN
22

2 SRR
R DR

R
RS ey
LT R

2

SRS

<5

2%

#
#
#
#

Lessons

1. API generation means
v Less work and more comprehensiveness

X Deep coupling
2. Importance of features for consumer devs

API

#
#
#
#

#
#
#
#

Our two key challenges

Evolution
Developer —
Experience Management

API

#
#
#
#

APT vi1 APT v2 APT v3 API v4

f:\ f:\ r:\ f:\
N il Gl Oy

API

#
#
#
#

The cost of breaking changes

For consumer devs For APl devs

e Beingforcedto e Visible: Keep several
change code with APl versions alive
each new version e Hidden: Avoid change

to reduce visible cost

API

#
#
#
#

Are we really the only
ones with this problem?

#
#
#
#

How should APIs be
versioned?

#
#
#
#

|s hypermedia really
feasible or is it a utopia?

#
#
#
#

What is the *best™ format
for the APl responses?

JSON or xmL?

Or should it be
binary?

HAL, JSON-LD, Siren, JSON-API, ...?

#
#
#
#

s REST dead and should
we go with GraphQL?

#
#
#
#

Learning from the best

1. The most popular “API 2. Tons of articles and
Guidelines” several books.
= AH D

API

#
#
#
#

OREILLY"

BOO kS that made a [ltdenibatll
difference for us Wﬁ’b APIs
V.V MR RESTul -
Beware of the Web Clients
many “bad” EUBINGRESE TIROUSH PO
articles and books |
out there OREILLY* S A & St W Mike Amundsen

API

#
#
#
#

#
#
#
#

#
#
#
#

APIs designed to evolve

How we are solving each of the challenges

API

#
#
#
#

1. Hypermedia Controls

Home URL

Affordance Types

Consumers must only know Contract with consumer defines

ONE URL affordance types
H . ¢ . (relations, actions, ...)
And how to navigate fromit Start with IANA’s 80 relation types

APl

CONFERENCE

#
#
#
#
https://www.iana.org/assignments/link-relations/link-relations.xhtml

Pagination

7 Top Reasons Why You Face Obstacles In Learning Liferay.

A month of Slack: Growing global communities avery day

A simple and versatile [with Refugee Ph

Communia publishes position papers to

How fast is your internet? How MLab uses CCO data for the public interest

APl

CONFERENCE

#
#
#
#

Pagination

{
"_embedded": {...}, Defined by
n n o, | ' - . .
total": 43, __---=zZZZ% IANA Link Relations
“count": 306, == P
"_1inkS"Z { __________ ””,””/
"first":4{ ~ " .- -7
"href": "http’:/JJ.ocaI'host:80§Q/—07api/p/groups?page=1&per_page=30"
"next" 4y~ -7
"href": "http:7/localhost:8080/0/api/p/groups?page=2&per_page=30"
H --
"last” :‘{
"href": "http://localhost:8080/0/api/p/groups?page=2&per_page=30"
}
}
}

APl

CONFERENCE

#
#
#
#
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

Actions

{
“properties”: {
“title”: “Hypermedia is awesome”,
}
"actions": [
{
"name": "delete-item",

"title": "Delete Blog Posting",
"method": "DELETE",
"href": "http://localhost:80806/0/p/blogs/abcdef",

}
{

"name": "publish",

"title": "Publish Blog Posting",

"method": "POST",

"href": "http://localhost:8080/0/p/123URLs4123AREabcdeOPAQUEf41231",
}

APl

CONFERENCE

#
#
#
#
http://stateless.co/hal_specification.html
https://github.com/kevinswiber/siren

Forms

{
"actions": |
{
"name": "add-blog-posting”,
"title": "Add Blog Posting",
"method”: "POST",
"href": "http://localhost:8080/0/p/blogs",
"type": "application/json",
"fields": [
{ "name": "headline", "type": "text" },
{ "name": "author", "type": "Person" },
]
}

APl

CONFERENCE

#
#
#
#
http://stateless.co/hal_specification.html
https://github.com/kevinswiber/siren

APl

2. Shared Vocabularies

Standard types Well defined custom types

schema.org: 597 typesy 867 Never expose internal models
properties

Custom types must be consumer

ActivityStreams, microformats, ...
focused

CONFERENCE

#
#
#
#
http://schema.org

Internal models should never
be exposed in an API

APl

#
#
#
#

Schema.org type

BlogPosting

Canonical URL: http://schema.org/BlogPosting

Thing > Crea k > Article > ¢ IMediaPosting > BlogPosting

A blog post.

Usage: Over 1,000,000 domains

[more..]

Property Expected Type Description

Properties from SocialMediaPosting

sharedContent CreativeWork A CreativeWork such as an image, video, or audio clip shared as part of this posting.

Inherit based | Emm—
n e r I a n Ce a S e articl Text The actual body of the article.

Text Articles may belong to one or more ‘sections’ in a magazine or newspaper, such as Sports, Lifestyle,

articleSection E

mode| e

Integer or The page on which the work ends; for example 138" or "xvi".

pageEnd Toxt
Integer or The page on which the work starts; for example "135" or "xiii". A | | t t M b t

— Tex attriputes are
Text Any description of pages that is not into and for “1-6, 9, 55" or

pagination *10-12, 46-49". O pt | O ﬂ a |

SpeakableSpecification Indicates sections of a Web page that are particularly ‘speakable’ in the sense of being highlighted as

or being especially appropriate for text-to-speech conversion. Other sections of a page may also be

URL usefully spoken in parti cir the " kable' property serves to indicate the parts most
likely to be generally useful for speech.

The speakable property can be repeated an arbitrary number of times, with three kinds of possible
‘content-locator’ values:

APl

CONFERENCE

#
#
#
#

Defining types and their mapping to
internal models and actions is the
most important API design activity

And the most difficult

API

#
#
#
#

Communicating the types

OpenAPI JSON Schema ALPS

. .
ormat agnostic Tied to JSON

Widely adopted Format agnostic
Focused on resources Focused on field types not)
Not th dia friend| semantics API PrOflle :'FOCUS on
ot yet hypermedia friendly semantics

APl

CONFERENCE

#
#
#
#

Goal: The smallest contract possible

e Onesingle URL
e Message types instead of specific resources
e Affordance types instead of actions per resource

Focus on types!

API

#
#
#
#

APl

Shared vocabularies make
Hypermedia feasible

#
#
#
#

Sure but, how are consumers
oullt?

API

#
#
#
#

Building Consumers

Robustness principle

Code to types

Mindset change to “Game loop” (leads to big
reusability)

API

#
#
#
#
https://en.wikipedia.org/wiki/Robustness_principle

How should APIs be versioned?
Do not version upfront

Design APIs to avoid breaking
compatibility

#
#
#
#

Is hypermediareally feasible orisita
utopia?

't is feasible, and recent progress on
standards and tools has made it much
easler

#
#
#
#

What is the *best* format for the API
responses?

't depends on the consumer.

|[deally, support “all” and let them decide

#
#
#
#

Is REST dead and should we go with
GraphQL?

Nope

#
#
#
#

Does this work for real?

3 projects were we are applying this

API

#
#
#
#

Project: Microservice APIs

API stack: Java with Spring
Consumers: Java Microservice, Mobile App

API

#
#
#
#

name: "pulpo-api",

Ii;j~ description: "API for consuming PULPO Services",
_links: {
self: { href: "http://localhost:80684/" },
H URL accounts: {
L href: "localhost/{projectId}/accounts{?filter, page, size,sort*}",
templated: true
b

account: {
href: "localhost/{projectId}/accounts/{identifier}",

templated: true
H

fields: {
href: "localhost/{projectId}/fields{?filter, page,size,sort*}",

templated: true

b

field: {
href: "localhost/{projectId}/fields/{identifier}",
templated: true

}

APl

CONFERENCE

#
#
#
#
http://stateless.co/hal_specification.html
https://tools.ietf.org/html/draft-kelly-json-hal

Links among resources

API

#
#
#
#

&

{
Affordance Types "dateCreated":"2017-11-15T16:23:352",

"dateModified":"2017-11-15T16:23:352",

"identifier" :"AV_Afi6-Y3UMLZEdmkBE",

"name" :"Friends",

"segmentType" :"STATIC",

"status":"ACTIVE",

"_links":{
"self":{

"href":"http://localhost:8084/my-project/individual-segments/AV_Afi6-Y3UMLZEdmkBE"

H
"individual-segments"” :{
"href":"http://localhost:8084/my-project/individual-segments{?filter}",
"templated" :true

APl

CONFERENCE

#
#
#
#
http://localhost:8084/my-project/individual-segments%7B?filter
http://stateless.co/hal_specification.html
https://tools.ietf.org/html/draft-kelly-json-hal

APl

Hiding internal models

#
#
#
#

(::) @GetMapping(
produces = {MediaType.APPLICATION_JSON_VALUE, "application/hal+json"},

value = "/{identifier}"
Affordance Types)

public @ResponseBody Resource<Individual> findOne(
@PathVariable String projectId, @PathVariable String identifier) {

IndividualEntity individualEntity = _individualService.findOneByUUID (
projectId, identifier);

if (individualEntity == null) {
throw new NotFoundException(
"Unable to find Individual with individualUUID " + identifier);

}

return _individualResourceAssembler.toResource(individualEntity);

APl

CONFERENCE

#
#
#
#

"title": “We are in APIConference!”, E "headline": “We are in APIConference!”,
"subtitle": “APIConference”, : "alternativeHeadline”: “APIConference”,
"user": “localhost:8086/0/p/30325" : "author": “localhost:8086/0/p/30325"

b : H

{ : {
"title": “5 amazing things!”, § "headline": “5 amazing things!”,
"subtitle": “Get english!”, : "alternativeHeadline": “Get english!”,
"user": “localhost:8080/0/p/30325" ; "author": “localhost:8086/0/0/65443"

} : }

localhost:8080/0/api/blogs?start=25&end=27

APl

CONFERENCE

#
#
#
#

APl

Hypermedia controls for
pagination

#
#
#
#

{ : “count”: 2,
"title": “We are in APIConference!”, : “totalItems”: 30,
"subtitle": “THE conference for APIs”, : “members”: [
"user": “localhost:8080/0/p/36325" : {
}, : "headline": “We are in APIConference!”,
{ § "alternativeHeadline": “APIConference”,
"title": “5 amazing things to do in § "author": “localhost:8086/0/p/30325"
London!”, : },
"subtitle": “Get english!”, : {
"user": “localhost:8080/0/0/65443" : "headline": “5 amazing things!”,
} : "alternativeHeadline": “Get english!”,
] § "author": “localhost:8080/0/0/65443"
: }
1,
“view”: {

“next”: “localhost:8080/blogs?p=7&p_p=2"

localhost:8080/0/api/blogs?page=6&per_page=2

APl

CONFERENCE

#
#
#
#

How do | add support for
queries?

#
#
#
#

Adopt OData’s query language

APl

#
#
#
#

Document that all collections

support queries
This becomes part of our contract!

API

#
#
#
#

We used several standards

HAL, IANA Link relations, OData queries

API

#
#
#
#

Consumer developers can reuse existing
Libraries

API

#
#
#
#

Project: Platform APIs

API stack: Java with OSGi and JAX-RS
Consumers: Mobile Apps, Think Web clients, ESBs,

Legacy Apps, ..

API

#
#
#
#

{
IZI} "resources": {

"blog-postings": {
"href": "http://localhost:8086/p/blog-postings"
}

eb-sites": {
"href": "http://localhost:8080/p/web-sites"”
}
"documents": {
"href": "http://localhost:8086/p/documents”
t

"organizations": {
"href": "http://localhost:8086/p/organizations”
}

eople": {
"href": "http://localhost:8080/p/people”

JSON-HOME

APl

CONFERENCE

#
#
#
#
http://stateless.co/hal_specification.html
https://mnot.github.io/I-D/json-home/

Support for several response
formats

HAL, JSON-LD and Plain JSON

API

#
#
#
#

&) {
"@context": [

{ "creator”: { "@type": "@id" } },

{ "@vocab": "http://schema.org/" },
"https://www.w3.0org/ns/hydra/core#"

1,
"@id": "http://localhost:8080/p/blog-postings/0",
"@type": "BlogPosting”,
"alternativeHeadline": "Et eaque quod.",
"articleBody": "Sunt adipisci eligendi dolorem ducimus placeat.”,
Resource "creator": "http://localhost:8080/p/people/9",
| inks "dateCreated”: "2017-07-11T11:06Z",
"dateModified": "2017-07-11T11:06Z",
"headline": "Alone on a Wide, Wide Sea"

JSON-LD + HYDRA

APl

CONFERENCE

#
#
#
#
http://schema.org/
http://stateless.co/hal_specification.html
https://json-ld.org/
http://www.hydra-cg.com/

C::) "@id": "http://localhost:8080/p/blog-postings/0",
"@type": "BlogPosting”,
"creator”: "http://localhost:8080/p/people/9"”,

"headline”: "Alone on a Wide, Wide Sea”,
"operation": |

{
"@id": "_:blog-postings/delete”, .
"@type": "Operation", Actions
"method": "DELETE"

}

{
"@id": "_:blog-postings/update”,
"@type": "Operation",
"expects": "http://localhost:8080/f/u/blog-postings”,
"method": "PUT"

}

}
JSON-LD + HYDRA

APl

CONFERENCE

#
#
#
#
http://stateless.co/hal_specification.html
https://json-ld.org/
http://www.hydra-cg.com/

{
C::) "@id": "http://localhost:8080/f/u/blog-postings”,
"@type": "Class”,

"description”: "This can be used to create or update a blog posting",
"supportedProperty": |
{

"@type": "SupportedProperty",
"property": "creator",
"required": false,

|

{
"@type": "SupportedProperty",
"property"”: "headline",
"required”: true,

}

"title": "The blog posting form"
}

JSON-LD + HYDRA

APl

CONFERENCE

#
#
#
#
http://stateless.co/hal_specification.html
https://json-ld.org/
http://www.hydra-cg.com/

Representor pattern

et the consumer decide
what's the best format for their needs

API

#
#
#
#

We created our own thin framework to add
Hypermedia capabilities and Representor

Apio

API

#
#
#
#

Well defined custom types

public Representor<BlogPostingModel, Long> representor(
Builder<BlogPostingModel, Long> builder) {

return builder.types(

).
).
.addLinkedModel(

"BlogPosting”
identifier(

BlogPostingModel: :getld
addDate(

"dateModified", BlogPostingModel::getModifiedDate

‘creator"”, PersonId.class, BlogPostingModel::getCreatorId

.addRelatedCollection(

"comment”, BlogPostingCommentId.class

.addString(

"alternativeHeadline", BlogPostingModel: :getSubtitle

.addString(

"articleBody", BlogPostingModel: :getContent

.addString(

"headline", BlogPostingModel::getTitle

.build():

APl

CONFERENCE

#
#
#
#

Schema.org's types can be a good start,
but ultimately you will need to define your
own types

API

#
#
#
#

https://docs.google.com/file/d/1IV5tDkSyppyYM87UNn1oLYGduYrlAUDR/preview

S—— API Discoverability

In action!

Project: Data Integration
through ETL/ESB

Consumer: Talend Plugin

API

#
#
#
#

t™Map 1

Base wrttiogs

#
#
#
#
https://docs.google.com/file/d/1Veh-zfudbtlzfN0tzxtfFolO9B-Pi8LW/preview

#
#
#
#
https://docs.google.com/file/d/1bMlRhAk1OcNq9p9i_NU0JjZcmioSEnTF/preview

A
it ;ﬂﬁ;gz"‘h
I i

t,.

#
#
#
#

Your needs > Any specific solution

) ~~(/ Y/ - '/?,
CONFERENCE

#
#
#
#

REST S Shared
(with Hypermedia) Vocabularies

S the best solution for Evolvability

API

#
#
#
#

Spend time defining your vocabulary
't is the most important design activity for
an AP

API

#
#
#
#

Make consumers & their developers the
focus of your API design strategy

e Provide features that make their job easier
e APIsshould speak their language, not yours

API

#
#
#
#

#
#
#
#

Apio: An Open Source Project

Apio Architect Apio Consumer
e Forcesmapping layer o Leverage high reusability made
e Hypermedia by design possible by Hypermedia

o Features: Retries, Offline

Initially for JAX-RS. support, ...

Community effort to port Web
itto .NET, Python, Android
Node,... 10S

APl

CONFERENCE

#
#
#
#

Evolvable-apis.org
(Beta)

Evolvable APIs

Docs

Evolvable APIs

Embrace rapid evolution without breaking consumers.

® Overview.

Change is inevitable, design APIs prepared to evolve
and make the best of the API Economy.

‘ Evolvable APIs can be built using well known best
practices and standards. They are easy to develop and
easy to consume. Sounds great, isn't it? It's possible,
keep reading.

Updates

£) Evolvable REST API Guidelines

Principles

Foundation

Evolvable-apis.org
(Beta)

Principles

Foundation

Principles

Foundation

& Evolvable APIs

Docs Updates

Evolvable REST API Guidelines

Introduction

The Evolvable REST API Guidelines provide a well defined set of
mandatory and recommended rules for REST APIs designed to
achieve a high degree of decoupling of API providers and all of its
consumers. This decoupling allows the API to evolve over time

without breaking any of the consumers.

Evolvable REST APIs are specially useful in contexts where the consumers
are not written by the same development team as the server side API. Even
more so, when the deployment and update of the consumers is specially
challenging, as happens with native mobile applications and even more so,

consumers present in loT devices.

These guidelines aim to achieve the following goals:

* Provide a set of rules that any developer can follow to develop their
own highly decoupled Web APIs and consumers.

* Define a standard that developers can use as the basis for creating
server-side or consumer-side libraries that facilitate the creation of

Evolvable REST APIs.

These guidelines embrace the REST architectural style, with a special
emphasis on using hypermedia as the engine of application state.

Conventions used
in this document

This guide is a living document and additions to it will be made over time
as new style and design patterns are adopted and approved. In that spirit,
itis never going to be complete. The requirement level keywords MUST,

Introduction

Conventions used in this

document

= — ’fHANK YOU

—_— e alejandrohdezma / @jorgeferrer

#
#
#
#

