
Stay up to date with the best
practices in API design, security,
and development and take your

API journey to the next level.

API Whitepaper

@api_conference
#APICON apiconference.net

Simplifying APIs

API Conference
@apiconf

https://twitter.com/api_conference
https://apiconference.net/?utm_source=pdf&utm_medium=referral&utm_campaign=APIwhitepaper1.21
https://www.facebook.com/apiconf/

Contents

2apiconference.net

Platforms & Business
Don’t Let Developer Toil Affect the Business Value of Your Apps 3
Speeding up your software release cycles
By Michael Coté

12 Reasons Why Developers Should Consider Apache Pulsar 5
What is Pulsar?
By Chris Bartholomew

API Security
Logic-based threats and how to combat them 10
Principle steps
By Denis Jannot, Chuck Herrin

Security Shifts to Identity 12
Who should have access to a resource?
By Lori MacVittie

API Management
How Data Gateways Simplify Developers’ Lives 14
Making data easier to work with
By Jeff Carpenter

API Development
Scalable Programming 16
The right algorithm in the right place – binary search and sorting algorithms
By Ikuru Otomo

API Design
Documentation – how, what, and when should I comment? 22
Hitchhiking through the JavaScript jungle
By Sebastian Springer

https://apiconference.net

3apiconference.net

 WHITEPAPER Platforms & Business

By Michael Coté

It is no surprise that the world today is driven by apps.
Organisations all over the world are basing their busi-
ness goals on their capacity to integrate new apps quick-
ly, and they need to constantly reimagine how they
interact with and communicate with their consumers
and employees in order to fulfil changing expectations.

To do this effectively, businesses need to operate at
a high level of speed and agility. But in many cases this
isn’t happening. The phrase ‘move fast and break things’
could not be further from the truth when it comes to
how enterprises approach innovation today. In fact, ac-
cording to Forrester Consulting, 48% of executives [1]
say they haven't changed their applications in a year or
more.

One reason for this may be that organisations are deal-
ing with a high amount of developer toil and technical
debt. Developer toil is the repetitive, predictable, constant
stream of tasks that support the creation of software and
how it's run, but don't actually affect the features in the
software that people use. Or in other words "any activi-
ties that don't directly create business value”.

Typically, developers spend too much time on pro-
cesses that could be automated or even eliminated. Iron-
ically, this toil builds up over time as their organisations
prioritise shipping features rather than addressing these
problems in their overall software process. While devel-

opers can change their software quickly at first, just like
debt in real life, if this toil and tech debt are neglected,
it takes over and consumes the organisation's ability to
grow. This results in long, infrequent release cycles. A
feature that seemed simple and once took just 15 min-
utes now takes weeks, even months to get in front of
users.

Conducting a Developer Toil Audit
Anything you can do to speed up your software release
cycle will improve the quality, resilience, and busi-
ness value of your software. Continuously addressing
developer toil provides a significant boost to your or-
ganisation's software capabilities. For one of VMware’s
customers, addressing developer toil reduced the time
taken to introduce a new feature significantly – from
400 hours to just 24 by doing a developer toil audit and
addressing key factors contributing to this technical
debt.

So how can organisations overcome developer toil?
One way to do this is through a Developer Toil Audit.
This is a systematic process for finding, valuing, and
prioritising fixing waste in your software process. First,
the process finds wasted time and process debt in how
you build and release software. Second, the process then
helps you justify delaying working on features in favour
of eliminating and automating your software creation
process. The result is speeding up your software release

Speeding up your software release cycles

Don’t Let
Developer Toil
Affect the Business
Value of Your Apps
Michael Coté, Staff Technologist at VMware looks into how to address developer
toil to speed up software release cycles, make developers more productive, and
increase the business value of your apps.

http://www.apiconference.net

4apiconference.net

 WHITEPAPER Platforms & Business

cycle. The more frequently you can change and release
software, even with just small changes, the more oppor-
tunities you must learn what works and put those fea-
tures in front of customers, employees, and other users.

The process of conducting a Developer Toil audit in-
cludes:

1. Asking the right questions: A great way to uncover
developer toil is to ask about people's struggles, frus-
trations, and even boredom in the form of a tailored
question set. We advise using questions that are
specific to your organisation in addition to general
questions like "how long does it take to perform a
full build?". For example, highly regulated organisa-
tions should ask about tasks involving compliance.
Once the survey is completed, you can do some quick
analysis to locate and prioritise developer toil.

2. Combine into usable metrics: You now have a single
metric for each type of developer toil. And by com-
bining all the questions you create a single metric to
track overall developer toil. Extra points for creat-
ing dashboards with visualisations! As with all such
aggregate metrics, these are more directional than
exacting - their job is to point you to problems that
should be solved.

3. Link these metrics to business value: A simple rank-
ing of developer toil is better than nothing. However,
before deciding which developer toil to address, we
recommend linking each type of developer toil to busi-
ness value created by fixing the toil. Put briefly, the
value you get will be related to the time saved, and,
thus, the ability to ship more features in the future.

The less time developers spend on toil, the more time
they can spend on tasks that directly benefit the busi-
ness. Another way of looking at this is plain old pro-
ductivity: developers can now do more with the same
amount of time.

Another important outcome is increased staff morale.
The less time developers spend on boring, repetitive
work – toil – the happier they'll be. Stronger employee
hiring ability and retention are, or should be, a strategic
imperative for any organisation that depends on soft-
ware. Morale also increases software quality: happier
people make better software.

Slow Down to Speed Up
With the survey results in hand, you should have a
pretty good idea of which developer toil to fix. The last
step is to do the usual product management prioritising
to weight fixing these items with other tasks you could
do. These are strategic decisions that product managers
need to make. To fix toil, you need to stop shipping fea-
tures to free up time. You need to slow down the busi-
ness. At the start, before product managers have been
empowered to make these kinds of decisions, higher
level management should be involved to calibrate how
much slow down you're willing to put up with for future
agility. The calibration you're doing is this: if I fix one
item of toil and ship just one feature (instead of two)
this release cycle, then in the next release cycle I can ship
four features. Humans are not great at that kind of bird
in the hand versus birds in the bush thinking so you'll
need to figure out what works in your organisation.

Through our experience as consultants working with
product teams in different industries, we’ve used Devel-
oper Toil Audits to focus and motivate product manag-
ers and developers to fix toil and speed up their release
cycles and, thus, improve how their organisations build
software. This directly improves the business by adding
more capabilities and capacity to deliver more features,
even in the short-term. Each time you fix any technical
debt, you gain more capacity and capabilities to create
new features and improve your software. This is how
you use a modern software culture to increase business
agility. Or, put more simply: less developer toil leads
to better software, and better software leads to better
business.

Michael Coté, Staff Technologist, VMWare, studies
how large organizations get better at building soft-
ware to run better and grow their business. His books
Changing Mindsets, Monolithic Transformation, and
The Business Bottleneck cover these topics. He’s been

an industry analyst at RedMonk and 451 Research, done corpo-
rate strategy and M&A, and was a programmer. He also co-hosts
several podcasts, including Software Defined Talk. Cf. cote.io,
and is @cote on Twitter.

Links & Literature

[1] https://www.vmware.com/cio-vantage/articles/customer-experience-
starts-with-apps.html

Building Melio’s Payments Platform
over AWS Serverless
Omer Baki (Melio)

Melio is a B2B payments company. It
was considered the fastest-growing
payments company in the US in 2021.
The talk will be about the evolution of
our payments platform, which we built

over AWS serverless infrastructure. The way we
evolved our system to be able to support the fast-
growing business moving from processing millions to
processing billions of dollars. This technology enabled
us to make incremental small changes, and in ways,
was ideal for the way payments operate with banks,
credit card processors, and more. I will explain why I
think serverless is a great approach for new startups
and the way it enabled us to start as a monolithic ap-
plication and gradually break it down as the company
grew. I will discuss how we moved from a choreo-
graphed design to an orchestrated solution using
step functions.

http://www.apiconference.net
https://www.vmware.com/cio-vantage/articles/customer-experience-starts-with-apps.html
https://www.vmware.com/cio-vantage/articles/customer-experience-starts-with-apps.html
https://apiconference.net/api-platforms-software-as-a-service/building-melios-payments-platform-over-aws-serverless/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22

5apiconference.net

 WHITEPAPER Platforms & Business

By Chris Bartholomew

We built our own service DataStax Astra Streaming [1]
on Apache Pulsar [2], so this is a great time to take a
deeper look at the benefits of this open source technol-
ogy.

What is Pulsar?
Pulsar is a cloud-native messaging and streaming plat-
form that was open sourced by Yahoo in 2017. Since
then, Pulsar has grown in popularity, from 10,000
stars and over 450 contributors on GitHub to a Slack
community with more than 5,000 members, Pulsar has
taken off with phenomenal usage by enterprises like
Verizon Media, Yahoo! Japan, Tencent, Comcast, and
Overstock.

Pulsar has become the platform of choice to manage
hundreds of billions of events every day.

This project is a cloud-native, distributed, open-
sourced, pub-sub messaging and streaming platform. It
originated as an event broker from Yahoo! in 2015 and
it was contributed to the Apache Software Foundation
(ASF) as a top-level project in 2017.

Pulsar is interesting as it was designed to be a horizon-
tally scalable distributed system running on commodity
hardware that reliably streams messages without losing
data. It was originally designed to support Internet-scale
applications such as Yahoo! Mail and Yahoo! Finance.
As it was designed for these large implementations, it
was built to handle the most demanding data movement
use cases out there.

So why should you consider Pulsar for your applica-
tion streaming requirements? Here are 12 reasons why
there is a high level of interest and momentum in Pulsar,
and why every enterprise should be using it.

Reason 1: Messaging, streaming, and queuing,
all-in-one
The first reason to consider Pulsar is that it can cover
more than application streaming use cases. Pulsar can
be compared to other leading, traditional pub-sub mes-
saging system options like Apache Kafka [3], and to
messaging queuing systems like RabbitMQ [4] or Ac-
tiveMQ [5].

Kafka is the de facto standard for streaming use cases,
and for good reason: it is great at streaming and pub-

What is Pulsar?

12 Reasons Why
Developers
Should Consider
Apache Pulsar
Streaming technologies unlock the ability to capture insights and take instant
action on data that’s flowing into an organization; they’re key to developing ap-
plications that can respond in real-time to all kinds of events, like user actions or
security threats. In other words, they’re a key part of building great customer ex-
periences and driving revenue.

http://www.apiconference.net

6apiconference.net

 WHITEPAPER Platforms & Business

sub and at delivering messages to multiple consumers. In
Figure 1, multiple publishers are publishing to a topic,
and the same message is sent to multiple consumers.

RabbitMQ or ActiveMQ are great at queuing mes-
sages and competing consumer use cases. This is where
we are publishing publishers and sending messages into
the topic, but only one consumer is consuming each of
these messages. It’s trickier to accomplish competing
consumer use cases in Kafka, because it works on the
partition level and you can end up with extra partitions
you don’t need or consumers that don’t consume any
messages.

Pulsar combines the best features of a traditional mes-
saging system like RabbitMQ with those of a pub-sub
system like Kafka. You get the best of both worlds in
a high performance, cloud-native package. Rather than
having to run multiple different systems to cover these
use cases, Pulsar can cover them all from one deploy-
ment. This simplifies the infrastructure side for develop-
ers, while also making it easier to scale over time.

Reason 2: Performance
Pulsar was designed for high performance and to achieve
hundreds of thousands or even millions of messages per
second. A key consideration for Pulsar’s original design
was that it needed to have less than 10 millisecond pro-
ducer latency. When you publish a message, you receive
acknowledgement within 10 milliseconds consistently.
Pulsar’s architecture is optimized to get high throughput
and low, consistent latency.

Pulsar also supports up to millions of topics. This is
something that Kafka struggles with, so it can be more
suitable for use cases where the volume of topics sup-
ported is high.

In a third-party, vendor-neutral analysis by Software
Mill, Pulsar was rated as a high-performance messaging
platform in their report issued in July 2021 [6]. It is con-
siderably faster than traditional messaging systems and
can hold its own with the pub-sub crowd.

Reason 3: Modernize legacy applications
Pulsar’s flexibility makes it easy to modernize legacy
applications. This will be a significant trend over the

coming year where developers will need to think about
their future approach. According to research by IDC
[7], 86% of developers said their organizations had
modernized more than 50% of their legacy applications
in 2021, up from 65% in 2020. Similarly, O’Reilly re-
search in December 2021 [8] found that about 25% of
developers said that their companies planned to move
all of their applications to the cloud in the coming year.

Pulsar was designed to process message queuing ex-
change patterns, which means it can support older
enterprise applications written for RabbitMQ or Java
Messaging Service (JMS) without rewriting them. If
you have existing legacy JMS applications, you can do
a drop-in replacement by switching your broker type in
your application to Pulsar using DataStax’s Starlight for
JMS [9], turning your Pulsar cluster into a JMS 2.0 com-
pliant broker.

Similarly, if you have legacy RabbitMQ applications,
you can use DataStax’s Starlight for RabbitMQ to turn
your Pulsar cluster into a RabbitMQ-compatible bro-
ker.

Figure 1: Streaming (left) and Queuing (right) with Apache Pulsar

OpenAPI3 Killed Hypermedia –
Why REST is Overrated
Thomas Bayer (predic8)

REST is popular, and a lot of APIs claim
to adhere to this architectural style. But
REST is not the best choice for every
use case and also comes with some
disadvantages. At first glance, REST

seems to be simple. But designing a RESTful API is
rather complex: Should you use POST or PUT, a slash
at the end, query or path parameters? And there are
even more drawbacks: the lack of a standard, REST’s
technical nature, and its propensity to a data-driven
design. In this session, you’ll get to know the down-
sides of REST and why Hypermedia is being killed by
OpenAPI. Of course, you will also learn how APIs can
be fixed without too many changes.

http://www.apiconference.net
https://apiconference.net/api-development/openapi3-killed-hypermedia-why-rest-is-overrated/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22

7apiconference.net

 WHITEPAPER Platforms & Business

This saves costs by consolidating the brokers down
into a single large horizontally scalable Pulsar cluster.
You can then write new applications using event driven
architectures and more modern techniques that live to-
gether on the same platform.

This approach makes it easier to migrate your old
applications into the cloud, and also take advantage of
Pulsar features like message retention and replay.

Reason 4: Multi-tenancy to support different
teams
Once you have a high-performance, scalable messag-
ing system in place, you will want to share it between
different teams and groups within your organization. It
doesn’t make sense to have to replicate the system to
make sure different teams don’t impact each other or
build a complex overlay system to simulate multi-ten-
ancy.

Multi-tenancy is the ability for different user groups
to use the same underlying resources in a fair way. Pul-
sar can limit the amount of resources different tenants
in namespaces have access to. You can set the maximum

number of producers and consumers and maximum
rates on how much storage each consumer or topic can
have. Unlike Kafka, you don’t have to build an entire
multi-tenancy overlay manually or spin up a whole clus-
ter for a new user group.

Reason 5: Geo-replication for data recovery
Another feature that’s built into Pulsar is geo-replica-
tion which you can easily manage through Pulsar CLI
or REST API, without the need to install another pack-
age on top. Geo-replication (Figure 2) is key to recover
your data during disasters or enhance the performance
of your application.

Pulsar supports multiple topologies that replicate data
from the active data center to the standby data center.
If the active one fails, you can reconnect to the standby
data center. You can also have a more complex topol-
ogy where you publish a message in one data center in
North America and consume it in a different data center
in Europe. Basically, you can have an entire global mes-
sage bus by using the geo-replication feature.

Pulsar’s global configuration store also allows you to
standardize the policies, namespaces and data centers,
store them in a central location, and propagate the data
to all data centers automatically.

Another built-in feature, replicated subscriptions, is
ideal for disaster recovery scenarios. In case of failure, a
consumer can restart consuming from the failure point
in a different cluster.

Reason 6: Kubernetes and cloud-ready
architecture
According to the SlashData Developer Economics re-
search report for the Cloud Native Computing Foun-
dation (CNCF) [10], Kubernetes is continuing to grow
in popularity, with 57% of backend developers using
containers in the last 12 months. Larger enterprises in
particular are adopting Kubernetes faster, with 78% of
organizations using the technology.

This means that developers have to look at how their
applications can support Kubernetes and cloud-native
deployments. Pulsar was built to support this approach
from the start. Because Apache Pulsar uses a multiple
layer approach, separating where consumers connect
(brokers) from the storage layer (BookKeeper), it fits
very well into cloud infrastructures, which also separate
these two concerns. (Figure 3) Without having to ex-
pand both storage and computing at the same time, you
won’t be paying for compute or storage you don’t need.

Apache Pulsar works naturally in Kubernetes, sup-
porting rolling upgrades, rollbacks, and horizontal scal-
ing. When coupled with persistent volumes backed by
cloud storage with configurable performance dimen-
sions, Pulsar is a highly durable and highly flexible mes-
saging system that can scale from small test deployments
to large production deployments with ease.

Pulsar also has a proxy component that solves some
of the Kubernetes networking challenges that you can

Fig 2: Geo-replication on multiple topologies

Serverless Integration with Zapier
Michael Dowden (Andromeda Galactic Solutions)

Integrations between 3rd party applica-
tions and APIs has long been one of the
most challenging and time-consuming
parts of any application development
effort. But with the magic of cloud

automation, we can connect applications in just
minutes instead of days. In this talk, you’ll learn about
responding to cloud events such as HTTPS end-
points and Tweets, connecting multiple APIs such as
MailChimp and HubSpot, how @TechDailyCFP was
built using cloud tools without a single line of code,
and the benefits and drawbacks of cloud automa-
tion tools. Examples will be on the Zapier platform,
but similar principles apply to Integromat, Azuqua,
Automate.io, and others.

http://www.apiconference.net
https://apiconference.net/api-platforms-software-as-a-service/serverless-integration-with-zapier/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22
http://Automate.io

8apiconference.net

 WHITEPAPER Platforms & Business

have with systems like Kafka. With the growing popu-
larity of Kubernetes, Pulsar continues to develop and
work with these innovations.

Reason 7: Easy scaling, up and down
For developers, scaling application infrastructure up
and down is a task they would rather avoid. Typically,
developers will deal with this by estimating the amount
of resource their applications will want over time, and
then adding a buffer to cope with any peaks in demand.
This adds more expense, as well as being a management
task to track. Developers will also have to manage add-
ing resources to deal with growth over time too.

Apache Pulsar is built to make it easier for enterprises
to scale their cluster up and down. In other systems, when
you scale up, you have to work to redistribute and rebal-
ance the load between brokers. Pulsar actively monitors
the resources on your broker CPU memory network and
automatically redistributes the load when it’s overloaded.
And you can scale down brokers just as easily, letting Pul-
sar automatically redistribute the load. What if you need
more storage? Just add more BookKeeper nodes.

Whether you need to add more storage or need more
throughput, Pulsar handles everything automatically
with no manual partition rebalancing or long mainte-
nance periods required. This simplifies the experience
for developers, letting you concentrate on applications
rather than infrastructure.

Reason 8: Support for
better cost management
with tiered storage
Developers are more concerned
about the long term cost to run
their applications in the cloud.
According to research by the
FinOps Foundation and CNCF
[11], 68% of respondents found
their spending had gone up over
the past year, leading to over-
spends and budget pressures.
Finding ways to benefit from
cloud native approaches while
managing budget more effec-
tively will be a concern.

This means looking at smart-
er ways of managing applica-
tion infrastructure over time,
so that costs are controlled
more effectively. A good exam-
ple of this is using tiered stor-
age. This involves shifting older
data from more expensive cloud
resources to less expensive op-
tions, such as transferring older
messages stored on Apache
BookKeeper on high-speed,
high-performance SSDs and
moving them into lower-cost

storage options, like Amazon S3, Google Cloud and
Azure Blob Storage.

Pulsar supports this automatically without requiring
direct developer intervention, and it’s all transparent to
the client. Tiered storage is really helpful if you want to
store a lot of events in Pulsar at little or no cost. Instead
of spending premium dollars in storage, you can save
a significant amount of money on long term data with
Pulsar.

Reason 9: Fully open source approach
Pulsar is available for free under the Apache Software
Foundation without needing additional vendor propri-
etary code or projects for functionality. This makes it
easier to adopt and benefit from Pulsar, as well as help-
ing the project to expand over time.

When projects launch as open source under the con-
trol of one vendor organization, there is a risk that li-
censing terms will change in the future. This can involve
adding new restrictions for use, or changing the project
to a closed-source license. However, because Pulsar is
under the Apache Software Foundation, this organiza-
tion will not change the licensing terms to be more re-
strictive. Pulsar is open source today, and will be open
source tomorrow. More importantly, Pulsar has all its
functionality covered by one license so it is one project,
rather than requiring extensions to cover common use
cases.

Fig. 3: Pulsar’s separation of BookKeeper layer and broker layer

http://www.apiconference.net

9apiconference.net

 WHITEPAPER Platforms & Business

Reason 10: Pulsar functions and IO
connectors for easy connections
Pulsar has a framework for lightweight stream process-
ing. This means you can use Pulsar functions which are
fully integrated with the Pulsar Command Line Interface
or API to carry out additional tasks. Example use cases
for this would include cleaning and enriching your data
as part of the process, as well as routing events and writ-
ing functions in Java, Python and Go.

You can also get your data in and out of Pulsar us-
ing IO connectors without actually writing any code.
This involves configuring the connectors and it will start
sinking and sourcing the data using built-in connectors
such as Elasticsearch, MySQL, Postgres and RabbitMQ.

Reason 11: Schema registry to prevent data
incompatibility
When sending messages between producers and centers
that are decoupled, which is always the case in a messag-
ing or streaming platform, you want to make sure that
they can agree on the format of the data. If this agree-
ment is not in place, then those application components
cannot communicate with each other.

This becomes very important if you’re running tens or
hundreds of microservices application components. Pul-
sar uses a built-in schema registry that supports Avro and
JSON schemas, which allows producers and consumers
to register or learn the schema of the data sent on the
topic. This approach prevents data compatibility issues.

You can also enforce particular schemas on specific
topics or change your schema over time to make sure
that your application components communicate effec-
tively with each other, and that they are both backwards
and forwards compatible.

Reason 12: Protocol compatibility with Kafka
One of the developments around Apache Kafka is how
it can connect to multiple other components using Kaf-
ka Connect, allowing it to bring in data and export it
out. By supporting Kafka Connect as a protocol, other
services can connect with systems that support Apache
Kafka without changing anything. Kafka Connect is be-
coming a de facto standard for pubsub and messaging
services, but it can also be used by other services.

There are multiple projects working towards protocol-
level compatibility with Kafka, including DataStax’s Star-
light for Kafka [12] project. These projects add features
like multi-tenancy, geo-replication, and Kafka to Pulsar
interworking. For developers that have invested in Kafka
previously, these projects will make it easier to either add
Pulsar to applications where it makes sense, or to replace
Kafka with Pulsar over time. This can be useful for sav-
ing on costs around application infrastructure over time.
Pulsar has a lower total cost of ownership when you com-
bine its features, such as geo-replication, tiered storage,
performance and supporting multiple use cases with the
same project. It’s a great cost saving option for developers
dealing with complex scenarios and high data volume.

For example, when Splunk replaced Kafka with Pul-
sar, they found that its CapEx costs for servers and
storage were reduced by 1.5-2 times and its OpEx costs
decreased by 2-3 times. GigaOm also reported in 2021
that Pulsar offers up to 81% lower cost in 3 years com-
pared to Kafka [13].

Overall, Apache Pulsar supports a wide range of use
cases around application streaming and messaging. The
project fits with how developers want to build and de-
ploy their applications.

Chris Bartholomew is Engineering Lead at DataStax.
He is responsible for the company’s work around ap-
plication streaming and support for Apache Pulsar.
Chris previously founded a cloud messaging company
based on Pulsar and provided support for some of the

largest deployments using this open source project. He is the
author of the O’Reilly ebook: Apache Pulsar Versus Apache
Kafka: Choosing a Messaging Platform.

Links & Literature

 [1] https://www.datastax.com/products/astra-streaming

 [2] https://pulsar.apache.org/

 [3] https://kafka.apache.org/

 [4] https://www.rabbitmq.com/

 [5] https://activemq.apache.org/

 [6] https://softwaremill.com/mqperf/

 [7] https://www.idc.com/getdoc.jsp?containerId=prUS48058021

 [8] https://www.oreilly.com/radar/the-cloud-in-2021-adoption-continues/

 [9] https://www.datastax.com/blog/fast-jms-apache-pulsar

 [10] https://www.cncf.io/wp-content/uploads/2021/12/Q1-2021-State-
of-Cloud-Native-development-FINAL.pdf

 [11] https://www.cncf.io/blog/2021/06/29/finops-for-kubernetes-
insufficient-or-nonexistent-kubernetes-cost-monitoring-is-causing-
overspend/

 [12] https://github.com/datastax/starlight-for-kafka

 [13] https://www.datastax.com/gigaom-pulsar

Serverless API with Firebase
Michael Dowden (Andromeda Galactic Solutions)

Are you currently using microservices
and are looking to move to serverless?
Are you wanting to build a new server-
less application, but you need to provide
a public API? Both of these needs can

be addressed with Firebase Cloud Functions. This
talk will show how to build a variety of API endpoints
with Cloud Functions, including some operational
details such as resource allocation, available instanc-
es, run time, and middleware integration. You’ll walk
away with the basic knowledge to implement Cloud
Functions and the confidence that it can work for
your use case.

http://www.apiconference.net
https://www.datastax.com/products/astra-streaming
https://pulsar.apache.org/
https://kafka.apache.org/
https://www.rabbitmq.com/
https://activemq.apache.org/
https://softwaremill.com/mqperf/
https://www.idc.com/getdoc.jsp?containerId=prUS48058021
https://www.oreilly.com/radar/the-cloud-in-2021-adoption-continues/
https://www.datastax.com/blog/fast-jms-apache-pulsar
https://www.cncf.io/wp-content/uploads/2021/12/Q1-2021-State-of-Cloud-Native-development-FINAL.pdf
https://www.cncf.io/wp-content/uploads/2021/12/Q1-2021-State-of-Cloud-Native-development-FINAL.pdf
https://www.cncf.io/blog/2021/06/29/finops-for-kubernetes-insufficient-or-nonexistent-kubernetes-cost-monitoring-is-causing-overspend/
https://www.cncf.io/blog/2021/06/29/finops-for-kubernetes-insufficient-or-nonexistent-kubernetes-cost-monitoring-is-causing-overspend/
https://www.cncf.io/blog/2021/06/29/finops-for-kubernetes-insufficient-or-nonexistent-kubernetes-cost-monitoring-is-causing-overspend/
https://github.com/datastax/starlight-for-kafka
https://www.datastax.com/gigaom-pulsar
https://apiconference.net/api-platforms-software-as-a-service/serverless-api-with-firebase/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22

10apiconference.net

 WHITEPAPER Security

By Denis Jannot, Chuck Herrin

The move away from the older, monolithic compute
methodologies of the past towards the microservices-
centric, API-based environments of the future is what
characterises the modern enterprise. With digital trans-
formation in everyone’s sights, organisations are rapidly
adopting APIs for many good reasons.

APIs bring tremendous value to businesses in every
sector. They’re great for promoting collaboration and
partnership and allow a kind of ‘mashup mentality’
which has freed DevOps from more restrictive legacy ar-
chitecture models. API traffic is growing exponentially
at 30% year-on-year – accounting for an estimated 83%
of web traffic today.

The security model for APIs, however, is problematic.
In 2017, Gartner predicted APIs were going to become
the number one attack vector by 2022, a prediction they
had to revise in late 2021 as they saw the landscape ex-
plode far beyond expectations.

APIs – a novel attack surface
What are the issues facing CISOs trying to secure their
APIs? Firstly, adoption is by far outpacing security. The
rapid, iterative nature of API and endpoint development
means code is routinely updated multiple times per
week, often multiple times per day. This makes manual
API security testing incredibly difficult.

Secondly, modern API attacks are mostly logic-based.
They can’t be defended by traditional rules-based systems
like WAFs (Web Application Firewalls), or gateways set
up to monitor traditional threats, and legacy code scan-
ning tools lack the context to chain together the paths lev-

eraged in logic-based attacks. Traditional defences can’t
protect businesses from this new attack vector.

How significant is this problem? Roughly 50% of all
APIs in customer organisations are unmanaged [1]. This is
a huge blind spot and a major obstacle for security teams
who find the proliferation of highly distributed compute
environments often outpaces the ability to secure them.

Not hacking, exploiting inherent insecurities
You can’t defend what you can’t see, and when you
change from monolithic to microservices-based archi-
tectures, we naturally expect microservices to do more
than they ever have before – become more portable and
scalable. This, potentially, makes applications more vul-
nerable, and materially changes the attack surface ex-
posed to the outside world. This is why it’s important
to look at governance tools – modern API gateways, for
example, where you can enforce policies consistently
across your API and mesh architectures. That’s not the
end of it, though, APIs still expose application logic
which makes them vulnerable to attack.

Most API attacks are not the familiar injection-based
kind, and many aren’t hacks to begin with. A good ex-
ample is the extraction of tens of millions of user records
through the Facebook mobile app. In this instance, the
assailant didn’t crack any encryption keys, didn’t hack a
password, and didn’t attempt any SQL injection. The API
logic allowed it and the third party took advantage of it
– it was an unsanctioned usage of that API, but it wasn’t
really a ‘hack’.

This happens a lot – attackers figure out the API and
uncover inherent issues in the business logic. By ex-
ploiting failures such as broken object level authoriza-

Principle steps

Logic-based
threats and how
to combat them
APIs bring tremendous value to businesses in every sector. API traffic is growing
exponentially at 30% year-on-year. However, the security model for APIs is prob-
lematic. What are the issues facing CISOs trying to secure their APIs? In this article,
you will learn about the current issues and how to tackle them.

http://www.apiconference.net

11apiconference.net

 WHITEPAPER Security

tion (BOLA) and broken functional level authorisation
(BFLA), they don’t need to hack the APIs themselves.
What we realise, therefore, is our defences must be dif-
ferent. Our WAFs and gateways can’t (on their own)
defend against logic-based threats.

Adopting a holistic view to API security
What can we do to protect APIs before attacks damage
our businesses? The problem is widespread, and still rela-
tively new. The market is moving so quickly that Gartner
recently modified its reference architecture to include API
security as a dedicated layer in the stack. To give a sense
of how many companies are on top of this issue, only 11%
have a full-blown API security program [2] in their organi-
sations. So, it’s a relatively new challenge for everyone.

There are several elements that combine to solve API
security problems. Firstly, it’s about gaining proper vis-
ibility of the traffic running through the stack. Starting
with your traffic analysis and traffic inspection to watch
what’s going on within the stack is critical. It’s not
enough to observe traffic, though, you must go beyond
just tracking inspection to really get into the code.

Code analysis provides the chance to not only do your
standard SAS testing for API vulnerabilities, but also
provides us with a useful lens through which to view
third party APIs and endpoints being called from the
code base. Wib’s Code Analyzer also creates a logic flow
model to understand how software components inter-
act with each other that legacy SAST tools miss. This is
particularly important in large enterprises of distributed
teams working on different products; closing these blind
spots and applying different lenses to the data is essen-
tial. Wib, for example, provides a lens at the bottom

of the VCR compliance analyser which brings visibil-
ity to a company’s compliance obligations. Managers
have line of sight into which APIs serve PII, which are in
scope for PCI and credit card compliance.

The third piece of the puzzle is attack simulation to
identify real attacks against your APIs and endpoints,
for two reasons. One, it finds current vulnerabilities and
exposures you weren’t aware of. Two, it helps elimi-
nate false positives before your security team or your
DevOps team starts issuing a slew of remediation re-
quests. So, how do we get there?

Practical Steps
In a microservices-based framework, application teams
want to mitigate the complex authentication and au-
thorization headache inherent in the model. API Gate-
ways have been through a period of evolution in recent
years, particularly as the adoption of Kubernetes has
hastened. API Gateways, such as Solo.io’s Gloo Edge,
allow companies to implement all these mechanisms at
the Gateway event. In a modern API gateway, teams can
secure web applications with API keys or geo tokens
and can put additional defences in place to prevent API
abuse and block common threats. Gateways can also be
used to expose threats in legacy VMs and bare metal –
particularly important for many of the core datacentre
systems still relied upon by the largest companies.

Finally, before selecting an API gateway, it’s worth
thinking about whether adding a service mesh is part of
the long-term plan. Choosing a gateway based on Envoy
will make it significantly easier to adopt a service mesh
(based on Envoy) – providing the capability to manage
the complexities of modern, API-centric businesses. The
adoption of Kubernetes and Istio in the enterprise in
particular can make digital transformation simpler for a
greater number of organisations.

Denis Jannot is the Director of Field Engineering at
Solo.io, a company building application networking
solutions for the edge and service mesh. Denis is a
passionate engineer who has spent his career in tech-
nical roles working directly with customers and users

in architecting and adopting technologies like Object Storage,
Big Data, Containerization, Service Mesh into their infrastruc-
ture. He enjoys sharing what he learns with the community and
can be found creating demos, writing blogs, and speaking at
events.

Chuck Herrin is Wib's CTO, bringing with him over 18
years as the CISO of multiple global financial services
firms with operations in over 100 countries. Mr. Herrin
has broad and deep experience partnering with busi-
ness leaders, board members, and other stakeholders

to achieve their goals, enhance risk management discipline, im-
prove transparency, and deliver transformational change.

EventArc for Cloud Workflows:
A Swiss Army Knife for Service
Orchestration
Marton Kodok (REEA.net)

Join this session to understand how
Cloud Workflows resolves challenges
in connecting services, HTTP-based
service orchestration, and cloud orches-
tration. Based on practical examples we

will demonstrate the built-in decision and conditional
executions, subworkflows, support for external built-
in API calls, and integration with any Google Cloud
product without worrying about authentication. Dur-
ing the talk, we will see how the callbacks feature can
be used for various use cases, and how workflows can
be triggered by using Eventarc sources. In a nutshell,
we are going to cover Ops, serverless, and developer
possibilities, such as running serverless backups, do-
ing database jobs, connecting services, or orchestrat-
ing DevOps workflows and automating the cloud.

Links & Literature

[1] https://www.gartner.com/en/documents/4009103

[2] https://www.prnewswire.com/news-releases/salt-security-state-of-
api-security-report-reveals-api-attacks-increased-681-in-the-last-12-
months-301493728.html

http://www.apiconference.net
http://Solo.io
http://Solo.io
https://apiconference.net/api-security/eventarc-for-cloud-workflows-a-swiss-army-knife-for-service-orchestration/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22
http://REEA.net
https://www.gartner.com/en/documents/4009103
https://www.prnewswire.com/news-releases/salt-security-state-of-api-security-report-reveals-api-attacks-increased-681-in-the-last-12-months-301493728.html
https://www.prnewswire.com/news-releases/salt-security-state-of-api-security-report-reveals-api-attacks-increased-681-in-the-last-12-months-301493728.html
https://www.prnewswire.com/news-releases/salt-security-state-of-api-security-report-reveals-api-attacks-increased-681-in-the-last-12-months-301493728.html

12apiconference.net

 WHITEPAPER Security

By Lori MacVittie

Availability as a general category, comprising technolo-
gies like load balancing and caching and CDNs, main-
tained the highest priority for about as long as it took
for a newly launched web server to survive unmolested
on the Internet in 2003. Which, for those unaware, was
not very long.

Security shot to the top of the stack and has remained
there, unchallenged since about 2017—until now.

This year, for the first time, we saw a non-core secu-
rity service rise to the top of the “most deployed.” That
service is identity.

But it’s not just that identity and access have risen to
become the most deployed technologies. There is ample
evidence throughout our research that points to a sig-
nificant shift toward identity-based security.

Consider API security. Yes, people are deploying it.
But we dug into the details and asked about specific
types of protections that respondents considered valu-
able. We grouped them loosely into three categories:

1. Traditional. These protections derive largely from
the web-based protections included in web applica-
tion firewalls for years. Rate limiting, OWASP Top
Ten, and of course encryption/decryption.

2. Modern. These protections have emerged in the past
few years and risen as a significant source of secu-
rity for APIs. This group includes payload (content)
inspection like seeking out malware and malicious
content and authentication/authorization. Spoiler:
that’s the identity part.

3. Adaptive. Adaptive protections are a new category,
fuelled by the ability to leverage AI and machine
learning to perform behavioural analysis that can
differentiate between human and non-human users.
These techniques tend to form the foundation for
anti-fraud and bot protection services.

We asked what respondents considered the most valu-
able protections on this list. The results showed a high
degree of security sophistication, especially among
those who had implemented API protections in the
past year. As with deployment of services, identity was

Who should have access to a resource?

Security Shifts
to Identity
In the eight years since we first launched the annual research that would be-
come the State of Application Strategy Report, we’ve seen the steady rise of
security to the top of the app security and delivery services stack.

API Design Review –
Tipps aus der Praxis
Thilo Frotscher (Freiberufler)

Vor der Implementierung eines API
sollte unbedingt ein API-Design an-
gefertigt werden. Und wie alle anderen
Erzeugnisse der Softwareentwicklung,
so sollte auch dieses Design einer

fachkundigen Review unterzogen werden. Worauf ist
dabei zu achten? Welche Qualitätsmerkmale lassen
sich bereits in dieser frühen Phase sicherstellen und
welche Stolperfallen aus dem Weg räumen? Dieser
Vortrag liefert wertvolle Tipps aus zahlreichen Jahren
praktischer Arbeit mit APIs.

http://www.apiconference.net
https://apiconference.net/api-design/api-design-review-tipps-aus-der-praxis/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22

13apiconference.net

 WHITEPAPER Security

at the top of the list of most valuable protections for
APIs.

The value placed on adaptive methods is promising.
That’s not entirely surprising given the eager embrace of
AI and machine learning to fuel security services. Given
the volume of data and the impact of missing an attack,
it’s no surprise that the entire industry is turning to more
advanced and adaptive methods of security to protect
everything from infrastructure to applications to the
business itself.

Both identity and behavioural analysis are important
parts of a comprehensive security strategy, especially
for APIs given the role they increasingly play in power-
ing the digital economy. Inspection remains key as well,
as many attacks—particularly malware and malicious
content—are often easily identified by a unique signa-
ture that can be matched against the payload of an API
transaction. Speed of identification is as important as
confidence in identifying a possible attack, and inspec-
tion remains a quick and reliable method of identifying
malicious content.

Lastly, we see identity-related technology deployment
as a result of COVID-accelerated digital transformation.
We asked respondents what kinds of changes were be-
ing made to their security strategies post-COVID. More
than one-quarter (26%) have implemented a credential
stuffing solution and 34% have implemented API secu-
rity frameworks.

That first number is the relevant one to this topic, as
credential stuffing [1] is all about protecting the identity

Workshop: Level Up Your Serverless
Game – the Art of Writing and
Deploying Serverless Applications
Lena Fuhrimann (bespinian)

Play through our ten levels of writing
and deploying serverless applications.
Each level represents a new challenge
that teams who decide to go serverless
usually face. The goal of this workshop is

that you can work your way through these challenges
and caveats so that you don’t have to face them in
your own applications anymore. By doing so, you’ll
apply best practices, debug and harden your server-
less applications based on AWS Lambda and other
serverless technologies.

(credentials) of people in a digital world. Given the in-
credible rise in digital options for every kind of business
over the course of the pandemic, it’s heartening to see at
least some taking their responsibility to protect identity
seriously.

This is a relatively fast-moving trend in security, and
we expect it will continue to become more pervasive as
organizations further expand their presence in the digi-
tal economy. The importance of APIs foretells a need
to identify more accurately the ‘user’ of APIs, especially
with the growing importance of APIs in automation,
cloud-native application architectures, digital ecosys-
tems, and, of course, IoT. Protecting APIs in a digital
economy is not just a technology concern but a business
one as well.

But the trend also indicates how important identity is
in a digital world, and why it’s only somewhat surpris-
ing to see identity-related services rise to the top of the
most deployed application security and delivery tech-
nologies in 2022.

This shift toward identity revealed by our research
[2] is also significant as the market embraces zero trust
as a foundational approach to security. Zero trust was
named by 40% of respondents as the “most exciting”
trend or technology. As an architectural model, zero
trust focuses on securing and protecting applications
and infrastructure [3] by designing networks with secure
micro-perimeters and limiting risks by restricting user
privileges and access.

At the heart of zero trust is a simple question: who
should have access to a resource? While there’s definite-
ly a lot more that goes into answering that question and
enforcing resulting policies across core, cloud, and edge,
without identity the entire approach falls apart.

Whether identity stays top of mind remains to be seen
but, given that emerging trends like Web3 also place a
heavy emphasis on identity as a core construct, we think
it is likely that the shift in security toward identity is just
beginning.

Lori MacVittie is the Principal Technical Evangelist,
Office of the CTO at F5 Networks

„At the heart of zero trust is a simple question:
who should have access to a resource?“

Links & Literature

[1] https://www.f5.com/services/resources/glossary/credential-stuffing

[2] https://www.f5.com/state-of-application-strategy-report

[3] https://www.f5.com/services/resources/white-papers/why-zero-trust-
matters-for-more-than-just-access

http://www.apiconference.net
https://apiconference.net/api-development/workshop-level-up-your-serverless-game-the-art-of-writing-and-deploying-serverless-applications/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22
https://www.f5.com/services/resources/glossary/credential-stuffing
https://www.f5.com/state-of-application-strategy-report
https://www.f5.com/services/resources/white-papers/why-zero-trust-matters-for-more-than-just-access
https://www.f5.com/services/resources/white-papers/why-zero-trust-matters-for-more-than-just-access

14apiconference.net

 WHITEPAPER API Management

By Jeff Carpenter

According to research by SlashData and the Cloud Na-
tive Computing Foundation, there are around 6.8 mil-
lion developers working with cloud native technologies,
which equates to around 41 percent of all back-end de-
velopers today. They’re keen to use new approaches like
containers and Kubernetes, as they can move faster and
implement their applications quickly.

Data is quickly becoming more and more critical to
these applications. But developers want to spend less
time installing and managing databases; they prefer to
have these instances managed by others. According [1]
to Gartner, spending on cloud database management
systems (DBMS) will be 50% of the total database mar-
ket by 2022.

Why is this shift taking place? Developers want to
concentrate on what they do best: building applications;
and they want to reduce tasks that pull them away from
development.

Another example of this shift is the trend of teams
creating their own API layers (known as data gateways)
that sit between application code and databases. Data
gateways make it easier for developers to work with
data, without getting bogged down in the details of
managing schema, data migrations, and other database
administration tasks.

How data gateways work in practice
To learn more about data gateways, let’s consider the

reasons why developers create these abstractions. One
common use case is to mask changes to the underlying
database over time.

For example, consider the changes that occurred
when the Apache Cassandra® project changed its pri-
mary interface from Thrift to Cassandra Query Lan-
guage (CQL). This change represented a major upheaval
for developers that had built multiple applications or
microservices on the Thrift API. Some of these teams
elected to introduce abstractions that implemented the
Thrift API, translated incoming Thrift messages into
CQL invocations on Cassandra, and returned the results
as Thrift messages. This approach preserved the previ-
ous investment in application development, at the cost
of maintaining abstraction layers over time.

These abstraction layers provide a level of self-protec-
tion for developers: by using a utility or tool that meets
their needs, they can avoid some of the infrastructure
management problems and pitfalls that would other-
wise arise. However, these layers need to be supported
over time to avoid technical debt building up. They also
should be evaluated alongside new approaches to avoid
any sunk cost fallacies that might affect project road-
map decisions, and the opportunity cost associated with
failing to adopt new features that could improve perfor-
mance or reduce cost.

Generalized API data gateways are now emerging to
provide a more uniform approach to abstracting data-
base infrastructure. Rather than internally developed
and managed software, external open source projects

Making data easier to work with

How Data
Gateways Simplify
Developers’ Lives
Developers want to concentrate on what they do best: building applications; and
they want to reduce tasks that pull them away from development. Data gateways
make it easier for developers to work with data, without getting bogged down in
the details of managing schema, data migrations, and other database administra-
tion tasks.

http://www.apiconference.net

15apiconference.net

 WHITEPAPER API Management

are proving easier to adopt and use over time. These
projects enable a second common use case, which is po-
tentially even more valuable than the “self-protection”
approach described above: enabling rapid development
of applications that support massive scale.

How Stargate’s APIs simplify development
As an example, the open source project Stargate [2]
makes it easier to deploy Cassandra databases and inter-
act with data using developer-friendly APIs. Instead of
being forced to invest in learning yet another database-
specific query language, developers can use APIs that
they are familiar with, such as GraphQL, REST, gRPC,
or JSON documents.

While some developers have deep experience with
open source databases and are able to work with a vari-
ety of different schemas, others will not have that same
level of expertise. This can make it hard to create and
adapt schemas that will promote high performance at
scale. One aspect of Stargate that is especially intriguing
is its flexible approach to managing schema. Stargate
provides APIs that support both “schema-first” and
“API-first” approaches. For example, the Stargate Doc-
ument API completely abstracts the underlying CQL of
the Cassandra database, providing a schemaless “API
first” approach for storing JSON documents.

As another example, the Stargate GraphQL API sup-
ports two different types of schema-first development.
The “CQL-first” approach allows access to existing
Cassandra tables defined via CQL. This requires famili-
arity with how the database works. Once the database
is up and running and the schema defined, the data gate-
way can plug into this and then serve up data through
the GraphQL API.

Alternatively, when the developer team just wants their
database instance up and running, the data gateway can
handle this process for them – without requiring them to
know the best approach to the underlying database sche-
ma in that particular situation. This “GraphQL first” ap-
proach defines a standard set of API queries based on a
simple GraphQL schema provided by the developer, and
then the data gateway automatically works on how best
to deploy the database and create the underlying CQL
schema to implement the developer’s intent.

Regardless of skill and experience levels across the
team, the data gateway can simplify the process of sche-
ma creation and ongoing management to ensure a con-
sistent approach. In turn, this results in more efficient
queries, improving performance for the whole applica-
tion.

Data gateways: Value, scale, and speed
Businesses are using more and more data in their opera-
tions in order to meet customer expectations, so devel-
opers will continue to need to learn new skills to build
data-intensive applications. Developers can meet these
expectations and execute with speed by thinking more
in terms of data services, as opposed to traditional da-
tabases. Using a data service via an API is easier than
specifically developing for one database or another. In-
stead, the service should provide the information that
the application needs, on-demand.

The data gateway abstracts database infrastructure;
it interacts with the database to carry out requests, and
then presents that information back to the app. Using
an open source data gateway rather than designing new
abstraction layers for each application reduces time to
market and management overhead for the team.

By combining a data gateway with APIs and cloud na-
tive computing, developers can automate the majority of
their data infrastructure. This can make scaling up and
down in response to demand easier and faster compared
to traditional approaches. With more and more applica-
tions going cloud native, data gateways are becoming
an essential part of how developers achieve value and
scale quickly.

DataStax Astra DB [3], a DBaaS built on Cassandra,
includes the open-source data API layer Stargate.

Jeff Carpenter is a Software Engineer working on the
open source Stargate project, and involved in Devel-
oper Adoption at DataStax. He leverages his back-
ground in system architecture, microservices and
Apache Cassandra to help empower developers and

operations engineers build distributed systems that are scala-
ble, reliable, and secure.

APIs ohne Server bereitstellen –
wie geht das?
Flora Eggers (Amazon Web Servicesn)

Serverless-Technologien verfügen über
automatische Skalierung, integrierte
Hochverfügbarkeit und ein nutzungsab-
hängiges Abrechnungsmodell. Adminis-
tratortätigkeiten wie Kapazitätsverwal-

tung oder Betriebssystem-Patching entfallen, sodass
sich das Entwicklungsteam voll darauf konzentrieren
kann, nützlichen Code für seine Kunden zu schreiben.
In dieser Session betrachten wir unterschiedliche
Varianten, um APIs serverless bereitzustellen. Die
Vielfalt ergibt sich zum einen in Abhängigkeit von der
gewählten API-Form REST oder GraphQL. Zum an-
deren kann der zugehörige Code als serverless Funk-
tion oder Container hinterlegt sein. Für die Beispiele
werden Cloud Services von Amazon Web Services
wie z.B. AWS Lambda genutzt.

Links & Literature

[1] https://www.gartner.com/doc/reprints?id=1-
28F8N1L2&ct=211213&st=sb

[2] https://stargate.io/

[3] https://www.datastax.com/products/datastax-astra/apis?

http://www.apiconference.net
https://apiconference.net/api-management/apis-ohne-server-bereitstellen-wie-geht-das/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22
https://www.gartner.com/doc/reprints?id=1-28F8N1L2&ct=211213&st=sb
https://www.gartner.com/doc/reprints?id=1-28F8N1L2&ct=211213&st=sb
https://stargate.io/
https://www.datastax.com/products/datastax-astra/apis?

16apiconference.net

 WHITEPAPER API Development

By Ikuru Otomo

Some of you have probably used the following code in
a program in order to spontaneously measure a logic’s
runtime:

long start = System.currentTimeMillis();
doSomething();
long time = System.currentTimeMillis() - start;

Clearly, it's easy to implement and you can quickly check
the code’s speed. But there are also some disadvantages.
First, the measured values can contain uncertainties as
they can be influenced by other processes running on
the same machine. Second, you can’t compare the read-
ings with other readings taken from different environ-
ments. Declaring that one solution is faster than the
other isn’t helpful if they were measured on different
machines with different CPUs and RAM. Third, it’s dif-
ficult to estimate how the runtime could extend when
working with larger amounts of data in the future. It’s
become much easier to filter and aggregate data since
the Stream API was introduced in Java 8. The Stream
API even opens up the possibility to parallelize process-
ing [1]. But do these solutions continue to perform when
you need to work with 10 or 100 times the amount of
data? Is there a measurement that we can use to answer
this question?

Time complexity
Time complexity is a measurement for roughly estimat-
ing the time efficiency of an algorithm. It focuses on how
runtime increases as the input gets longer. For example,
if you iterate a list of n elements with a for loop, then n
and the runtime have a linear relationship. If you have
multiple for loops nested and executed n times each,
then this logic has an exponential effect on runtime.

Big O notation is a way to represent the relationship
between the input length and the runtime. A linear re-
lationship is represented by O(n), O(n²) represents a
quadratic relationship, where n is the input’s length. If
the runtime is independent of the input’s length and is
constant, then we write O(1). Figure 1 shows typical
big O notation values for how the runtime grows as the
input’s length increases.

There are two important rules for representation us-
ing big O-notation:

Only the term with the highest degree is considered.
For example: If the time complexity is n + nlogn + n²,
simply write O(n²), as the term n² has the strongest ef-
fect on runtime.

The coefficient is not considered. For example, the
time complexity of 2n², 3n², and ½n² is equal to O(n²).

It’s important to emphasize that time complexity only
focuses on scalability. Especially when n is a smaller
value, one algorithm may have a longer runtime even if
it has a better time complexity than others.

Fig. 1: The relationship between runtime and input length per time
complexity

The right algorithm in the right place – binary search and sorting
algorithms

Scalable
Programming
Java continuously introduces new, useful features. For instance, Java 8 introduced
the Stream API, one of the biggest highlights of the past few years. But is ag-
gregating data with the Stream API a panacea? In this article, I’d like to explore if
there’s a better alternative for certain cases from a complexity perspective.

http://www.apiconference.net

17apiconference.net

 WHITEPAPER API Development

Space complexity
In addition to time complexity, there’s another measure
for representing an algorithm’s efficiency: space com-
plexity. It looks at how memory requirements grow as
the input’s length increases. When you copy a list with n
elements into a new list, the space complexity is O(n) be-
cause the need for additional memory increases linearly
when you work with a larger input list. If an algorithm
only needs a constant amount of memory, regardless of
the input length, then the space complexity is O(1).

There’s often a trade-off relationship between time
complexity and space complexity. Depending on the
case, when comparing multiple algorithms, it’s impor-
tant to consider if runtime or memory is more important.

Binary search
As shown in Figure 1, an algorithm with time complexity
O(logn) has better time performance than O(n). Binary
search is one of the algorithms with this time complex-
ity. It’s applicable when you want to search for a target
value from a sorted list. In each operation, the algorithm
compares if the target value is in the left or right half of
the search area. For example, imagine a dictionary. You
probably won’t start on the first page of the dictionary to
find the word you’re looking for. You’ll open up to a page
in the middle of the book and start searching from there.

Figure 2 shows how the binary search proceeds when
searching for the target value 7 in a list of eleven elements.
The element marked in red represents the middle of the
current operation’s search area. If the number of ele-
ments in the search area is an even number, then it takes
the “left” element in the middle. In each operation, you
compare if the target value (7, in this case) is less than or
greater than the middle. Cut the search area in half until
you reach the target value. log2n is the maximum num-
ber of necessary comparison operations to find the target
value with the binary search, where n is the length of the
input list. Let’s take n = 8 as an example. The length of the
search area starts with 8 and decreases to 4 after the first
operation. After the second operation, it is divided in half
again to 2 and after the third operation, there’s just one
value in the search area. From this example, we can con-
clude that the number of operations needed is at most a
logarithm of 8 to the base 2 (log28 = 3), because 23= 8. In
big O notation, we omit the base and write only O(logn).

In Java, implementation of binary search is found in
the java.util.Arrays.binarySearch [2] and java.util.Col-
lections.binarySearch methods [3]. If you work with an
array, you can use the methods in the java.util.Arrays. If
you work with a list, then the methods in the class java.
util.Collections are applicable.

Sorting algorithm
There are several kinds of sorting algorithms, each with
different time complexities and space complexities. In
practice, typical sorting algorithms used are Quicksort,
Mergesort, and their variants. On average, the time
complexity of these two methods is O(nlogn) [4], [5].
There are also sorting algorithms with better time com-
plexities, but these often have limitations in the arrange-
ment of input list or require special hardware.

The methods for sorting in Java are implemented in
java.util.Arrays.sort [2] and java.util.Collections.sort
[3]. Since Java 8, the List interface also provides the sort
method [6], while the Stream API has the intermediate
sorted operation [1]. According to Java documentation,
these methods are implemented by default with Quick-
sort, Timsort, or Mergesort. But this can vary depending
on the JDK vendor.

Task 1: Searching in a sorted list
The first task is finding the target value in an already
sorted list. One potential solution is using the contains
method of the List interface (Listing 1).

This solution’s time complexity is O(n). In the worst
case, it searches the whole list until you reach the end.
Another solution is to take advantage of the fact that
the input list is already sorted, so the binary search is
applicable (Listing 2). Collections.binarySearch returns
an integer greater than or equal to 0 if the target value is

Fig. 2: Binary search sequence

Documentation-first API
development
Etienne Dilocker (Etienne Dilocker)

An API is only as good as its documenta-
tion. However, documentation is often
neglected and quickly becomes out of
date. That is why at SeMI we introduced
Documentation-first API development

– a new approach to ensure that our docs get the
attention it deserves. In a nutshell, for all the new API
work, we begin by creating thorough and well-defined
documentation, which enables plenty of new oppor-
tunities: shorter feedback cycles, testing of docs, etc.
Join this session to learn from our experience, how
we introduced the new process, what challenges we
faced and ultimately, how this improved the Developer
Experience around our API.

http://www.apiconference.net
https://apiconference.net/api-development/documentation-first-api-development/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22

18apiconference.net

 WHITEPAPER API Development

in the list. The two solutions’ space complexity is O(1)
since they only need a consistent amount of memory to
fix the result, regardless of input values.

I generated test data with 103 and 104 elements and
used it to compare the runtime for the two solutions.
The target values for the search are selected at regular in-

tervals and the runtime was measured mul-
tiple times for each target value. The tests
were run on a Windows 10 PC with Intel
Core i7-1065G7 CPU 1.30GHz and 32 GB
RAM. I used the Amazon Corretto 11.0.11
JDK and runtimes were measured with the
Java Microbenchmark Harness [7].

Figure 3 shows the results for each length
of input as a box plot. Each box plot con-
tains the measurements of calls that were
executed with different target values. A box
plot graphically represents the distribution
of measurement results and represents the

median, the two quartiles (whose intervals contain the
middle 50% of the data), and the two minimum and
maximum values of the data (Fig. 4). You can see in
Figure 3 that the solution’s runtime in Listing 1 is more
scattered than the binary search in Listing 2. This is be-
cause the runtime of the solution in Listing 1 heavily
depends on where the target value is located in the list.
This tendency becomes clearer when comparing results
between the test cases n = 103 and n = 104. Between the
two cases, the worst-case runtime of Listing 1 increased
significantly compared to Listing 2.

Task 2: Searching a range of values in a sorted
list
The next task is counting the occurrence of values in a
sorted list greater than or equal to a and less than b (a ≤
xi < b) where xi is the respective value in the input list.
The requirements are that the input values a and b must
always satisfy a ≤ b and there must not be any duplicates
in the input list. An intuitive idea is using the intermedi-
ate operation filter in the Stream API to collect just the
elements in a specific range of values, and ultimately,
count the number of elements with the terminal opera-
tion count (Listing 3).

The time complexity of this solution is O(n), because
you must iterate once through the whole list, checking

Fig. 3: Running times of the respective solutions for task 1

Listing 2
// input
List<Integer> list = List.of(12, 15, 19, 20, 21, 24);
int target = 19;

// solution
boolean answer = Collections.binarySearch(list, target) >= 0;

Listing 1
// input
List<Integer> list = List.of(12, 15, 19, 20, 21, 24);
int target = 19;

// solution
boolean answer = list.contains(target);

Fig. 4: Box Plot

http://www.apiconference.net
http://List.of
http://List.of

19apiconference.net

 WHITEPAPER API Development

each list element to see if the value is in the range. But is
it possible to use binary search for this task too? What
if we could set the following two pieces of information:

• Position of the value a in the input list, if included.
Otherwise, the position in the input list where you
can insert the value a.

• Position of the value b in the input list, if included.
Otherwise, the position in the input list where you
can insert the value b.

The difference between the two calculated positions is
the number of elements between the two thresholds. In
this solution, the binary search is performed twice. But

since we don’t consider the coefficient in the big O nota-
tion, the time complexity of this solution is still O(logn).
This is for the same reason as in Task 1: The space com-
plexity of the two solutions is O(1).

Listing 4 shows a sample implementation for this so-
lution. Be aware that this code will not work if the input
list has duplicates. As described in the documentation
of Collections.binarySearch [3], the method does not
guarantee which one will be found if the target value is
included more than once in the list.

Collections.binarySearch returns an integer greater
than or equal to 0 if the target value is in the list. Oth-
erwise, it returns a negative value where -(insertion
point)-1 is. The insertion point is the position in the list
where the target value should be inserted in order to
keep the list sorted. In order to calculate the insertion
point back from the return value -(insertion point)-1,
you can simply use the bitwise NOT operator ~.

Just like with Task 1, Figure 5 plots the running times
of the two solutions as a box plot, measured with differ-
ent lengths of input and target values. Again, it’s easy to
see that the solution in Listing 4 with binary search has
more stable run times than the one in Listing 3.

Task 3: Find the largest value in an unsorted
list
Now the task is finding the largest value in an unsorted
list consisting of integers. One possible solution using
the Stream API is to use IntStream and its terminal op-
eration max [8] (Listing 5).

This solution has time complexity O(n) and space com-
plexity O(1). A different idea is to sort the list in descend-
ing order and return the first value in the list (Listing 6).
As previously mentioned, Java provides several ways of
sorting a list. To sort in descending order, you must spec-
ify a comparator in Java that compares backwards, since
by default, the list is sorted in ascending order. You must
also not use an immutable list, except when working with
the intermediate sorted operation in the Stream API, be-

Fig. 5: Running times of the respective solution in Task 2

Listing 3
// input
List<Integer> list = List.of(12, 15, 19, 20, 21, 24);
int a = 14, b = 19;

// solution
long answer = list.stream().mapToInt(Integer::intValue)
 .filter(value -> a <= value && value < b).count();

Listing 4
// input
List<Integer> list = List.of(12, 15, 19, 20, 21, 24);
int a = 14, b = 19;

// solution
int lower = Collections.binarySearch(list, a);
int upper = Collections.binarySearch(list, b);
lower = lower < 0 ? ~lower : lower;
upper = upper < 0 ? ~upper : upper;
int answer = upper - lower;

http://www.apiconference.net
http://List.of
http://List.of

20apiconference.net

 WHITEPAPER API Development

cause the sort methods will process the list directly. For
instance, the List.of method returns an immutable list.

This solution has time complexity O(nlogn). How-
ever, the solution’s space complexity depends on the
method used in the implementation of the sort meth-
od. As previously seen in Figure 1, the time complex-
ity O(nlogn) is worse than O(n). In fact, you can see in
Figure 6 that as the length of the input list n increases,
the solution’s runtime from Listing 6 also increases dra-
matically with sorting – more than it did in Listing 5.
However, in the next task, we will see that in certain
cases, sorting the list is a good idea.

Task 4: Find the largest k elements in an
unsorted list
In the last task, we saw that sorting isn’t necessary if
you only want to know the largest value of an unsorted
list. What about needing the k largest values from the
list? So, if k = 3, then you must find the three largest
values from the list (assuming that k is less than the in-
put length). In this case, it’s no longer enough to iterate
through the input list once. But the solution with sorting
will continue to work (Listing 7).

Listing 5
// input
List<Integer> list = List.of(23, 18, 15, 38, 8, 24);

// solution
OptionalInt answer = list.stream().mapToInt(Integer::intValue).max();

Fig. 6: Average
runtimes of
the respective
solution for
Task 3

Listing 6
// input
List<Integer> list = Arrays.asList(23, 18, 15, 38, 8, 24);

// solution
list.sort(Collections.reverseOrder());
int answer = list.get(0);

This solution can be easily optimized with a priority
queue. A priority queue is implemented in Java with a
binary heap [9] and is an abstract data structure that
can be used to query the smallest value (or largest, de-
pending on which comparator is specified) in the queue.
Generally, the time complexity for adding and deleting
values is O(logn). For querying the smallest value, it is
O(1), where n is the length of the priority queue.

In our case, we add individual elements from the input
list to the priority queue and delete each time the small-
est value from the priority queue as soon as the queue’s
size is greater than k. Lastly, you insert individual ele-
ments from the priority queue into a list. Listing 8 shows
a sample implementation of this solution. A small opti-
mization, the priority queue is instantiated with an ini-
tial capacity of k+1 since it can contain k+1 elements at
most. This solution’s time complexity is O(nlogk), since
you insert n elements from the input list into the priority
queue at a time, but the priority queue’s size is limited
to k. The space complexity is O(k) because you keep k
elements in the priority queue temporarily so that you
can eventually create the result list.

Building unified API with
data-oriented GraphQL framework
Amity Wang (Airbnb)

As Airbnb transitioned from monolith
to service-oriented architecture, many
parts of our application have become
better managed, better organized, and
higher quality. Their APIs and data,

however, became fragmented and difficult to use
and understand. Over the past few years, Airbnb has
been building a platform to unify their data graph, and
make data access and product logic more understand-
able and reusable. In this talk, I’ll go over some of the
learnings of building and scaling this unified GraphQL
framework, and look ahead to the emerging universe
of data-oriented microservice architectures.

http://www.apiconference.net
http://List.of
http://List.of
https://apiconference.net/api-development/building-unified-api-with-data-oriented-graphql-framework/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22

21apiconference.net

 WHITEPAPER API Development

Figure 7 shows the average run times of the respec-
tive solutions when measured with different lengths for
input list n. The larger the difference between n and k,
the larger its effect on the runtime.

Conclusion
In this article, I summarized the ideas of time and space
complexities, and – in particular – I compared how time
complexity affects runtime when working with a large
amount of data. It’s good practice to keep the two meas-
ures in mind and consider other criteria like code readabil-
ity or maintainability during trade-offs. The Stream API is
a very powerful tool for smaller data sets. But basically,
the time complexity is O(n) if you filter or search over the
entire input and don’t prematurely terminate. If there’s a
possibility of the input growing in the future, then from

Fig. 7: Average
runtimes of the cor-
responding solution
for Task 4

Listing 8
// input
List<Integer> list = List.of(23, 18, 15, 38, 8, 24);
int k = 3;

// solution
Queue<Integer> queue = new PriorityQueue<>(k+1);
for(int v : list) {
 queue.offer(v);
 if(queue.size() > k) {
 queue.poll();
 }
}
List<Integer> answer = Stream.generate(queue::poll)
 .takeWhile(Objects::nonNull).collect(Collectors.toList());

the beginning you should consider if there’s a better solu-
tion from the point of view of both complexities.

Ikuru Otomo graduated with a Master of Information
Science and Technology from Hokkaido University and
currently works as a Senior Software Developer at
sidion GmbH.

Links & Literature

[1] https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/
util/stream/Stream.html

[2] https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/
util/Arrays.html

[3] https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/
util/Collections.html

[4] https://www.inf.hs-flensburg.de/lang/algorithmen/sortieren/quick/
quick.htm

[5] https://www.inf.hs-flensburg.de/lang/algorithmen/sortieren/merge/
mergen.htm

[6] https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/
util/List.html

[7] https://github.com/openjdk/jmh

[8] https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/
util/stream/IntStream.html

[9] https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/
util/PriorityQueue.html

Listing 7
// input
List<Integer> list = Arrays.asList(23, 18, 15, 38, 8, 24);
int k = 3;

// solution
list.sort(Collections.reverseOrder());
List<Integer> answer = list.subList(0, k);

Explore HAL/HAL-FORMS based
APIs with HAL-Explorer
Kai Tödter (Siemens AG)

The hypermedia formats HAL and HAL-
FORMS are very popular within the REST
community. In order to be able to quickly
explore and try out such APIs, Kai Tödter
developed the HAL Explorer tool. HAL-

Explorer is a web application developed with Angular
+ Bootstrap that can be easily integrated into existing
services. In this session, Kai first gives an introduction
to HAL and HAL-FORMS and then gives an overview of
the capabilities of HAL Explorer using many examples.

http://www.apiconference.net
http://List.of
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/stream/Stream.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/stream/Stream.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Arrays.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Arrays.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Collections.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Collections.html
https://www.inf.hs-flensburg.de/lang/algorithmen/sortieren/quick/quick.htm
https://www.inf.hs-flensburg.de/lang/algorithmen/sortieren/quick/quick.htm
https://www.inf.hs-flensburg.de/lang/algorithmen/sortieren/merge/mergen.htm
https://www.inf.hs-flensburg.de/lang/algorithmen/sortieren/merge/mergen.htm
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/List.html
https://github.com/openjdk/jmh
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/stream/IntStream.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/stream/IntStream.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/PriorityQueue.html
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/PriorityQueue.html
https://apiconference.net/api-development/explore-hal-hal-forms-based-apis-with-hal-explorer/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22

22apiconference.net

 WHITEPAPER API Design

Hitchhiking through the JavaScript jungle

Documentation –
how, what, and
when should I
comment?
Documentation usually ranks behind testing in the most loved topics in soft-
ware development. And after that, there’s usually only topics like endlessly
managing legacy code bases that you haven’t even developed yourself.

By Sebastian Springer

I admit, I don't really like writing comments in code. I
don't really think much of it. However, there are some
places in your code where documentation in the form of
comments is absolutely necessary. So, let’s have a look
at why I find a lot of comments to be nonsensical, and
why it’s good form to be prolific in comments elsewhere.

My code is self-explanatory, I do not need
comments
The book “Clean Code” was published in 2008 and much
of it is still valid today, even if Uncle Bob, his views, and
public appearances are up for discussion. Among other
things, “Clean Code” teaches you that you should write
self-explanatory code that speaks for itself. What do com-
ments do in the code? In many cases, they explain what
the code does. Why not write the code so that it’s obvious
what it does? In any case, this sounds like a good idea.
But it's not that simple. What constitutes understandable
code is up to the individual. What seems obvious to one
person may be completely incomprehensible to another.
But the solution isn’t to ask for comments in the code re-
view explaining every single line. Here, it’s much better to
sit down together with the code and rewrite it so that it’s
understandable for everyone involved. Because of this, I
think that pair and mob programming are excellent ap-
proaches for producing high quality code. Ultimately, the
discussion about comprehensibility in the development
process moves forward, to when the code is created and
not just after the damage has already been done.

But back to our actual topic: comments. Basically,
comments are completely superfluous for the JavaScript
engine. Developers write comments either for them-
selves or others involved in the project. Hopefully, we
agree that comments like the ones in Listing 1 have no
place in our application’s code.

One problem in this example is that some of the com-
ments are obvious. You should avoid comments like this
if possible, since they tend to disrupt the reading flow
and merely point out facts in the code. Similarly, com-
ments visually divide functions into multiple blocks. If
you see that this approach is becoming common in your
project, there’s a simple solution: outsource the indi-
vidual blocks to functions and give them a meaningful
name. Mostly, the separator comment already gives you
a good hint about potential function names. Admittedly,
this isn’t the case in our example.

Listing 1: Comments in code
function doSomething(x, y, z) {
 if (!x) {
 return false; // return false if x is falsy
 }
 // ---- first block ----
 const value = x + 10; // adds 10 to x
 ...
 // ---- second block ----
 ...
}

http://www.apiconference.net

23apiconference.net

 WHITEPAPER API Design

and parameter types. However, the type information
of parameters and return values and whether a param-
eter is optional are only part of a reasonable interface
documentation. Therefore, at least the public interfaces
of applications are often supplemented with further in-
formation. One of the best tools for this is JSDoc. Just
like Javadoc, Doxygen, or phpDocumentator, the idea
here is that the documentation of a function or class is
handled in a comment block. JSDoc defines some stand-
ard elements for documentation, such as @param for
parameters or @return for the return value.

TSDoc – clean documentation
A similar project exists for Type-Script called TSDoc. It
follows the same schema, but is adapted to TypeScript
and has some extensions. Listing 2 contains a simple
example of an add function that adds two numbers.

So much for obvious documentation. However, this
example is intended to show TSDoc and its tools, rather
than its shining elegance. For example, these comments
can be inserted into the TSDoc Playground at [1] to see
the result. This website is suitable for quickly checking
simple structures, but not for more extensive applica-
tions. The ESLint plug-in named eslint-plugin-tsdoc is
much more purposeful. It reviews the project and makes

Inline comments can make sense in some places in the
code, namely if they clarify the developer's intention
that led to the corresponding code location. And this is
only if it’s not immediately obvious. Technical require-
ments in algorithms are good candidates for these com-
ments, as they can be easily misinterpreted as errors in
the code. Here, it’s always good if the comment (or at
least the commit containing the comment) contains a
reference to a ticket or other further documentation.

But why do inline comments have such a bad repu-
tation? Basically, they’re unnecessary in cleanly imple-
mented code, as the code speaks for itself. Additionally,
the biggest danger of comments is that they become
outdated. If the source code is updated, the comment is
forgotten. It has to be done quickly. Cleanup work like
documentation and tests can be done later. The com-
ment is ignored and the test is skipped. This comment
can quickly lead us down the wrong track when we read
the code. It can do more harm than if it weren’t there in
the first place. You’d better develop the habit of instead
of writing comments, ask yourself how you can write
your code to make the comment redundant instead.

However, there are places where comments are man-
datory, and it’s always where your code is used by other
people. Typical examples include the interface between
server and client, shared libraries, and helper functions
and classes. In other words, in all public interfaces.
There are tools for each of the different agencies to
make the work easier.

TypeScript – the better JavaScript?
JavaScript has a weak type system and doesn’t have
the capabilities to describe the signature of functions
in code. Of course, with JSDoc and co., tools can help
solve this problem. However, you must make sure that
the types of the parameters and the documentation are
synchronized. TypeScript helps solve this and many
other problems. Another advantage is that TypeScript
is used in an application not only for public interfaces,
but for all interfaces. So they can all be described and
documented at least in a very lightweight way.

Modern development environments take informa-
tion from the signatures of the functions and help de-
velopment by displaying information such as names

Listing 2: Function with TSDoc
/**
 * Adds two numbers and returns the sum.
 *
 * @param a - the first operand
 * @param b - the second operand
 * @returns the sum of a and b
 */
function add(a: number, b: number): number {
 return a + b;
}

Integration and conversation
patterns – SaaS & Micro-SaaS
Dirk Fröhner (Amazon Web Services)

Companies deal with integration prob-
lems in many areas and on many layers,
and there are dozens of ways how to es-
tablish integration between systems, all
with their individual trade-offs. However,

loosely coupled integration does not only allow for
designing independent systems that can be devel-
oped and operated individually, but can also increase
the availability and reliability of the overall systems
landscape – particularly by using asynchronous com-
munication between systems. Once the foundational
patterns for loosely coupled integration and asyn-
chronous communication are understood, subsequent
challenges are already waiting for architects. An area
that stands out here is when you architect for creat-
ing or consuming SaaS and Micro-SaaS solutions.
A fundamental difference is that you now need to
integrate with systems outside your own contexts, en-
vironments, and sovereignty. Join this session to learn
about the special reality of integrating systems in a
SaaS world with the respective integration patterns.
Based on a few fictional companies, you will then
see how these patterns can be applied to real-world
use cases. Finally, receive guidance on integration
technology based on these examples, with a focus on
cloud-native and serverless services.

http://www.apiconference.net
https://apiconference.net/api-design/integration-and-conversation-patterns-saas-micro-saas/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22

24apiconference.net

 WHITEPAPER API Design

sure that it follows the TSDoc specification rules. For ex-
ample, the plug-in reports an error if the hyphen between
the parameter name and the description is missing.

TypeDoc - we print our own manual
Now you've neatly tagged all the interfaces you want
to share with other people with TSDoc comments.
What's next? The ESLint plug-in slaps you on the wrist
when you violate the standard. The IDE gives helpful
tips when you use the documented functions, but it's
still not clear or easy to read. So we need another solu-
tion. It comes in the form of TypeDoc, a generator for
documentation. This tool reads your source code files
and generates the appropriate documentation from the
combination of TSDoc comments and TypeScript's type
information. You can run TypeDoc with the command
npx typedoc *.ts. It generates documentation for all
TypeScript files in the current directory. By default, it
exists in a directory called docs in the form of a series
of HTML files. The entry point is the index.html file.
You can either open the documentation locally in the
browser or make the documentation accessible to oth-
ers over a web server. You can see the result of our add
function in TypeDoc in Figure 1. It looks much fancier
than the comment block in the code.

Now let’s turn to a more specialized area: the inter-
face between server and client.

OpenAPI - the standard for server interfaces
If you implement server-side applications, the endpoints
you expose to your clients are your interfaces. Fortunate-
ly, as far as REST APIs are concerned, there’s a widely

used description standard called OpenAPI. For example,
if you implement your application with Express, you can
use the swagger-jsdoc and swagger-ui-express packages
to generate your documentation. Here, let’s take another
very simple interface that adds two numbers. This time,
it is a web interface implemented in Express that can be
used by other services and clients (Fig. 2).

Usually, the source code of these web services is not
available for all using instances. Without documenta-
tion, using it is a wild guessing game that you don’t want
your users playing. Now, it's a matter of properly docu-
menting the interface. You can see a simple example of
such interface documentation in Listing 3.

The most important thing at this point is that you give
your interface’s users all the information they need to
use it. You should try to make the description fields as
understandable as possible with explanations. How-
ever, the most important thing is to have meaningful
examples for both inputs and outputs.

In our case, we will use the swagger-jsdoc package.
This allows us to describe the interface in terms of com-
ments, so that the documentation can be done directly
on the interface. If you change the interface, be sure to
update the documentation too. Otherwise, the same ap-
plies to other comments in your application. Before you

Fig. 2: Adding two numbers in swagger-jsdoc

Fig. 1: Docu-
mentation dis-
play generated
with TypeDoc

http://www.apiconference.net

25apiconference.net

 WHITEPAPER API Design

mislead your users with false comments, leave out the
comments (or the interface documentation) completely.

And what did we learn from this?
Before you start “enriching” your source code with com-
ments in every conceivable place, try replacing unneces-
sary comments with clean, self-explanatory source code.
If you lose the bigger picture in the code, divide it into
smaller function blocks with meaningful names and be
sure to name variables meaningfully. The length of a vari-
able name doesn’t matter. In your build process, these
names are usually optimized anyway. This turns the code
itself into documentation. When you have the chance, you
should talk to others about your code and get feedback.

Once there’s a chance of another person working with
certain parts of your application, documentation for in-
terfaces becomes mandatory. Make sure your documen-
tation is short, concise and, most importantly, always
up-to-date and error-free.

Yes, documenting is a pain. So try to automate it as
much as possible and use tools that do most of the work
for you.

Sebastian Springer is a JavaScript developer at Mai-
bornWolff in Munich and is mainly concerned with the
architecture of client- and server-side JavaScript. Se-
bastian is a consultant and lecturer for JavaScript and
regularly shares his knowledge at national and inter-

national conferences.

Links & Literature

[1] https://tsdoc.org/play

Listing 3: API documentation in an ex-
press application

import { Router } from 'express';
const router = Router();

/**
 * @swagger
 * components:
 * schemas:
 * Addition:
 * type: object
 * required:
 * - a
 * - b
 * properties:
 * a:
 * type: integer
 * description: First number
 * b:
 * type: integer
 * description: Second number
 * example:
 * a: 1
 * b: 2
 */

/**
 * @swagger
 * /add:
 * post:
 * description: Add two numbers
 * requestBody:
 * required: true
 * content:
 * application/json:
 * schema:
 * $ref: '#/components/schemas/Addition'
 * responses:
 * "200":
 * description: The result of the addition
 * content:
 * application/json:
 * schema:
 * type: object
 * properties:
 * result:
 * type: integer
 * example:
 * result: 3
 */
router.post('/add', (req, res) => {
 const result = parseInt(req.body.a, 10) + parseInt(req.body.b, 10);
 res.json({ result });
});
export default router;

A Lifecycle Perspective on
API Versioning
Matthias Biehl (API-University.com)

What is true for software in general
also holds for APIs: successful APIs get
changed. The reason is simple: suc-
cessful APIs are used by various API
consumers, who demand new features,

extensions, bug fixes, and optimizations. From this
perspective, APIs changes are inevitable. But this is
only half the story. Various consumers use APIs and
rely on them to remain stable. Otherwise, it would
break their existing integrations. Their software clients
have dependencies on the API, and even a small
change in the API is enough to break these clients.
From this perspective, changes in APIs are undesira-
ble. Obviously, there is a dilemma. And it is the task of
the API provider to resolve this dilemma. In this talk, I
want to give you some tips for dealing with it.

http://www.apiconference.net
https://tsdoc.org/play
https://apiconference.net/api-design/a-lifecycle-perspective-on-api-versioning/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp2.22

	Contents
	Don’t Let Developer Toil Affect the Business Value of Your Apps
	12 Reasons Why Developers Should Consider Apache Pulsar
	Logic-based threats and how to combat them
	Security Shifts to Identity
	How Data
Gateways Simplify Developers’ Lives
	Scalable
Programming
	Documentation – how, what, and
when should I
comment?

