
API Whitepaper

THE FUTURE OF APIS

Learn the latest trends in API security,
design, and management while exploring

where the worlds of API, DevOps,
and JavaScript overlap.

API Conference
@apiconf

@api_conference
#APICON apiconference.net

https://www.facebook.com/apiconf/
https://twitter.com/api_conference
https://apiconference.net/?utm_source=pdf&utm_medium=referral&utm_campaign=APIwhitepaper1.21

Contents

2apiconference.net

API Development
3API Contract Definitions

Different ways of specifying contracts
by Lena Fuhrimann

API Security
"Most organisations are not prepared for the scale of security breaches to come" 	 6
Interview with Jeff Williams, Chief Technology Officer at Contrast Security
by Jeff Williams

API Design
8

10

What the James Webb Space Telescope Can Teach Us About Engineering APIs
API as spacecraft
by Matthias Biehl

Preventing Data Infrastructure Sprawl – What Developers Can Do
Proactively looking at data services and APIs together
by Ovais Tariq

API Management
Freedom of Choice with Apache Cassandra and Stargate 12
A gateway to flexibility: Stargate and Apache Cassandra
by Mark Stone

API Platforms & Business
The Role of APIs in Digital Government Context 15
Digital essentials
by Petteri Kivimäki

Microservices
API Gateway or Just a Service Mesh Tool? 18
IT depends...
by Michael Hofmann

JavaScript
Developing Web APIs with Node 23
Intro to Node.js part 2
by Golo Roden

https://apiconference.net

3apiconference.net

WHITEPAPER API Development

by Lena Fuhrimann

HTTP works great as a means of communication for
microservices because it is open, reliable, programming
language-agnostic, and works great over the wire. All
these features are crucial to modern services, as they
allow engineers to change the underlying technologies
(e.g., change the back-end code from Python to Go)
without it affecting the contract. Therefore, the API’s
consumers don’t even need to know about the imple-
menting technology and the providing team can take
independent decisions respectively.

Service contracts usually contain the following four
components:

• Available endpoints and operations on each endpoint
• Operation parameters input and output for each

operation
• Authentication methods
• Contact information, license, terms of use, and other

information

Specification and implementation
When working with services and their respective con-
tracts, one has to maintain both the specification and
the implementation. Ideally, these should always be in
sync, as the best documentation is useless if it does not
accurately reflect the reality of the API implementation.

Manual specification
The easiest way of creating a contract is to manually
write it, and then write the respective code that should
implement the contract. This is quite tedious and error-
prone, as you have to basically write everything twice.
When you change your implementation, you have to
think about also changing the documentation and con-
tract in the exact same way and vice versa. A way better
approach is to either pick a technology that is contract-
based and incorporates the interface specification in the
exposed API or to at least automate either the generati-
on of the contract from the implementation or the other
way around.

Automated generation
There are two basic approaches to keeping the contract
and the implementation in sync in an automated way.
The first one is to write the code first and have the con-
tract generated from that (Implementation First). The
second approach is to write the contract and have the
respective implementation code generated from that
(Contract First).

Using either the contract first or implementation first
approach guarantee that there is a single source of truth
and that the other part is always in sync. As such, both
are viable approaches. However, in general, it is prefer-
red to write the contract first and generate implemen-
tation code from it. The reason being that when you

Different ways of specifying contracts

API Contract
Definitions
When running one or multiple services, it is essential that they have reliable service
contracts [1] defining their exposed APIs. Those contracts mostly consist of decla-
rative interface definitions, which strongly define and type the API exposed by the
respective service. As such, it is crucial that the code making up the service exactly
implements the interface and therefore fulfills its side of the contract. Regressions
need to be detected and changes reflected in a well-communicated update to the
contract. Here, we want to look at different ways of specifying contracts for what
is one of the most common protocols for exposing service APIs: HTTP.

http://www.apiconference.net

4apiconference.net

WHITEPAPER API Development

begin implementing your service, ideally, the contract
has already been defined and communicated with po-
tential consumers of your API to allow them to work
independently of your implementation. Having a hu-
man- and machine-readable contract checked into your
source code repository allows you to track changes to
that contract over time and additionally serves as docu-
mentation for what the implementation code does (or at
least what it should do).

Technologies
Here, we’ll look at three different technologies that allow
you to write a clearly defined and declarative contract for
your services: OpenAPI, GraphQL, and gRPC. These all
have their advantages and disadvantages, which will be
laid out and discussed. Obviously, there are many more
technologies which allow declaring contracts, but the
ones presented here are three very popular ones which
are easy to use and have great communities around them.
They will be illustrated along the simple example of an
API where one can query Pokémon by their ID.

OpenAPI
OpenAPI (formerly known as Swagger) is a very wides-
pread way of specifying REST and other HTTP APIs. It

is easy to write because the specification is just a JSON
or a YAML file which defines what your API looks like
by following a clearly defined specification.

An HTTP endpoint definition in OpenAPI might look
as follows (Fig. 1):

OpenAPI [2] itself doesn’t come with any tools to ge-
nerate the specification from your implementation or vice
versa. However, because it is such a popular format, there
are many tools that allow you to parse your implemen-
tation code (and possibly additional annotations) and
generate a valid OpenAPI specification from it. A great
example of such a tool is springdoc-openapi which takes
Java classes with their properties, methods, and annota-
tions and automatically generates an OpenAPI specifica-
tion from those. There are also tools to do it the other
way around. These take an existing OpenAPI spec and
generate boilerplate code from it for a compliant imple-
mentation. A popular example of such a tool is oapi-
codegen which creates Go code from a valid specification.

Obviously, OpenAPI not being directly integrated
into the implementation frameworks has a great dis-
advantage: It does not enforce (e.g., at compile time)
that your implementation actually perfectly fulfills the
specified contract. However, you can achieve a similar
outcome by adding a check for your code’s compliance
to your automation pipeline, which prevents releases
that diverge from their contract in an unwanted manner.

At this point, it is noteworthy, that REST applications
can include so-called HATEOAS links. These are URLs
included in the response body to a request, which lead
to further endpoints providing actions for an element.
If a client automatically follows those links, contracts
can rely on that and therefore drop some of the actu-
al URLs and paths from their specification. However,
not too many applications in the wild reliably imple-
ment HATEOAS [3] links, and they have their caveats
and shortcomings.

Fig. 1: OpenAPI HTTP endpoint definition

Fig. 2: GraphQL schema

Evolving Your APIs, a Step-by-Step
Approach
Bobur Umurzokov (Api7.ai)

When you publish your first HTTP API,
you’re more focused on short-term
issues than planning for the future.
However, chances are high that you’ll be
successful, and you’ll “hit the wall”. How

do you evolve your API without breaking the contract
with your existing users? In this talk, first, I’ll show
you some tips and tricks to achieve that: moving your
endpoints, deprecating them, monitoring who’s using
them, and letting users know about new endpoints.
The talk is demo-based and I’ll use the Apache
APISIX project for it.

http://www.apiconference.net
https://apiconference.net/api-management/evolving-apis/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23
http://Api7.ai

5apiconference.net

WHITEPAPER API Development

GraphQL
GraphQL [4] calls itself “a query language for your
API.” The technology is about defining a schema which
strongly types your endpoint methods and the objects
they expect and return.

A simple GraphQL schema might look as follows
(Fig. 2):

It is not only much more concise than the above
OpenAPI specification, but it also has great advantages
because it is part of the GraphQL specification. Almost
every GraphQL endpoint exposes its schema automati-
cally, which is a direct product of the endpoints it actu-
ally exposes. This allows clients to query the contract
directly from the endpoint and therefore know that it is
always up to date. Tests can be run against that exposed
schema, which would detect breaking changes automa-
tically and potentially prevent releasing such. These con-
ventions of how the endpoint exposes its documentation
allow us to use comprehensive client frameworks such
as apollo-client.

With GraphQL, there are also frameworks that al-
low writing a schema first and generating the respective
boilerplate code from it. A popular tool for doing so

Fig. 3: Protocol buffer interface

is gqlgen in Go.

gRPC
Another popular technology for declaring contracts
is gRPC [5]. It is based on Protocol Buffers [6], which
is a way of specifying how to serialize structured data.
The interface of a protocol buffer is defined in a file that
might look like this (Fig. 3):

One big difference between protocol buffers and the
other technologies mentioned is that the data exchanged
is in binary format rather than plain text. This makes
them very performant but also harder to debug, which
makes having a clearly defined schema and API crucial.
A compiler of such a Protocol Buffer file is built into the
toolchain and lets you generate boilerplate code from
the specification and enforce compliance with the defi-
ned contract.

Conclusion
There are many ways of writing contracts for your ser-
vice APIs. A good contract has the following characte-
ristics:

•	It is human-readable
•	It is machine-readable
•	It is declarative and comprehensive
•	It is tracked via version control
•	It is programming language-agnostic
•	It enforces that the implementation fulfills the con-

tract
•	Breaking changes to the contract are detected and

properly communicated to potential consumers

This makes the above technologies excellent choices,
and all of them are a great step up from simply writing
your contract somewhere in a wiki.

Lena Fuhrimann is an energetic software engineer
and architect. She founded the company bespinian in
2019 with Mathis Kretz and has since worked with
many customers and interesting technologies. Her
primary areas of interest include security, serverless

technologies, public clouds, and infrastructure as code. She has,
however, worked extensively with Kubernetes and its ecosys-
tem, and has deployed numerous applications to those plat-
forms using automation and GitOps. She uses Arch.

Links & References

[1]	https://cloud.google.com/appengine/docs/legacy/standard/java/
designing-microservice-api

[2]	https://www.openapis.org/

[3]	https://en.wikipedia.org/wiki/HATEOAS

[4]	https://graphql.org/

[5]	https://grpc.io/

[6]	https://github.com/protocolbuffers/protobuf

Building Web APIs with Rust and
Axum
Rainer Stropek (software architects)

Web APIs written in Rust are small,
performant, and secure. However, a
great programming language is not
enough to build web APIs in practice. It
is also necessary to have a framework to

make you productive. In Rust, you can choose from a
variety of web API frameworks. Axum is a rather new
one that’s gaining popularity fast. In this session,
Rainer Stropek introduces you to web API develop-
ment with Rust and Axum based on an end-to-end
sample. Attendees do not need to be Rust specialists,
but practical experience with web API development
in other programming languages is recommended.

http://www.apiconference.net
https://cloud.google.com/appengine/docs/legacy/standard/java/designing-microservice-api
https://cloud.google.com/appengine/docs/legacy/standard/java/designing-microservice-api
https://www.openapis.org/
https://en.wikipedia.org/wiki/HATEOAS
https://graphql.org/
https://grpc.io/
https://github.com/protocolbuffers/protobuf
https://apiconference.net/api-development/web-apis-rust-axum/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

6apiconference.net

WHITEPAPER API Security

by Jeff Williams

devmio: Why are we seeing such a fast, widespread
adoption of APIs and an increase in API traffic?
Jeff Williams: APIs have grown so rapidly because they
allow enterprises to innovate and interconnect more
rapidly. When browsers became able to get data from
APIs using Ajax, it kicked off an unstoppable market
shift that is still playing out. Today, almost all websites
use JavaScript in the browser to call APIs that populate
the pages you see with data.

devmio: A report from Gartner predicts that APIs will
potentially cause the biggest security vulnerability in
history. Do you think that is an overestimation, or are
people simply not prepared for the scale of security
breaches to come?
Jeff Williams: This is accurate. Most organisations are
not prepared for the scale of security breaches to come
because they include APIs in their regular security scans
of software, relying on legacy web application security
(AppSec) testing tools to scan lines of code for known
vulnerabilities. However, traditional security tools don’t
work on APIs: They were designed for web apps, not to
test the security of an API. This leads to a false sense of
security, and pride before a breach.

devmio: How do most API attacks occur? What is the
most common weak point?
Jeff Williams: APIs are not only the connective tissue
that holds together the different parts of a piece of soft-
ware, they are also often exposed directly to the internet
and are easy for attackers to target. Further, APIs often
have direct access to sensitive data in backend systems.
This makes successful exploits more serious, as there
aren't multiple layers of code between attackers and
sensitive data.

devmio: What is API sprawl, and what problems can
this cause?
Jeff Williams: APIs are relatively small compared to tra-
ditional web apps. So, you need a lot of them. Pretty soon
you have version control problems, rogue APIs being
stood up, several different API platforms… and you have
a sprawling mess. This leads to difficulty ensuring that all
of your APIs are getting the right security attention.

devmio: Where should teams begin when creating a se-
curity-focused API strategy? What should they focus on?
Jeff Williams: Ensure they deploy a modern, integrated
API security platform that manages what traditional
API or application security can’t do: namely, to secure
APIs from the inside out.

Interview with Jeff Williams, Chief Technology Officer at Contrast
Security

"Most organisations
are not prepared for
the scale of security
breaches to come"
The API ecosystem is evolving rapidly, allowing for faster innovation but also ex-
posing many businesses to security risks. We talked about APIs and API-related
vulnerabilities with Jeff Williams, the co-founder of and Chief Technology Officer
at Contrast Security and a founding member and major contributor to OWASP, a
nonprofit foundation dedicated to improving software security.

http://www.apiconference.net

7apiconference.net

WHITEPAPER API Security

•	API inventory: You can’t secure what you don’t
know. You need an inventory process.

•	API security testing: You’ve got to write secure code,
and that means finding unknown vulnerabilities
in APIs, microservices and functions. After all, the
OWASP Top 10 vulnerabilities are just as applicable
with APIs as they are in traditional web apps.

•	Components: You have to secure your supply chain,
including finding known vulnerabilities in active
third-party libraries, frameworks and services.

•	API protection: In order to protect production,
you’ve got to identify probes and attacks on both
known and unknown vulnerabilities and prevent
exploits.

•	API access: Strong authentication and authorization
on functions at the API level as well as at the data
layer are crucial.

devmio: What are the key steps in properly validating
an API and ensuring proper user identity verification?
Jeff Williams: Authentication is straightforward. You
should definitely use a product instead of implementing
yourself. There are many subtle and tricky ways that
you can implement authentication. Just like encryption,
your mantra should be “don't build it yourself”.

devmio: How can threat modeling help teams improve
their API security?
Jeff Williams: Threat modeling can help identify archi-
tectural weaknesses in API deployments, including APIs
that aren’t protected by encryption, authentication, and
authorization.

devmio: What tools would you recommend including in
every team’s security stack?
Jeff Williams: Teams should look to deploy the follow-
ing three tools:

•	Interactive application security testing (IAST): Uses
instrumentation to continuously monitor and analyze
APIs from within as they run in development and test
environments. This approach yields real-time analysis
as software is being developed and tested. This makes
them ideal for Agile, DevOps, and DevSecOps envi-
ronments, as they enable IT to find and fix security
flaws early in the SDLC when they are easiest and
cheapest to remediate. IAST provides teams with the
full context of what's going on inside the code of an
API, enabling them to see API traffic, code, configura-
tion, framework, libraries, backend connections, and
much more. Using this context enables users to detect
the behavior of vulnerable code and report detailed
findings back to developers for remediation.

•	Software Composition Analysis (SCA): Enables
businesses to protect their software supply chain by
identifying real threats from third-party components
across the entire SDLC — from code through test and
on through production. SCA uses instrumentation to
identify vulnerable libraries and how APIs use them.
With this context, developers receive actionable
remediation guidance to help them fix and protect
against API attacks.

•	Runtime application self-protection (RASP): RASP
provides two key API security capabilities: First, it cre-
ates visibility into exactly who is attacking you, what
attack vectors they are using on your APIs, and which
of your APIs is being targeted. Second, RASP prevents
most of the major classes of vulnerabilities from being
exploited, including both zero days and custom code
flaws. RASP uses instrumentation to add lightweight
security sensors to your API code and platforms.
These sensors can directly measure the security-
relevant behavior of your APIs and detect malicious
events. Working from inside APIs themselves, RASP
security is able to detect, block and mitigate attacks
immediately, protecting as they run in real time by
analyzing both their behavior and context.

Thank you for taking the time to share your expertise
with our readers!

Gating Your APIs Without Lifting a
Server
Garth Henson (Lucasfilm)

When working with APIs – especially
with cloud-native – security should be
prioritized in our architecture, though it is
often an afterthought. How do you
restrict or throttle access to your

endpoints? Are you able to onboard clients, monitor
behavior, rotate secrets, and revoke access without
modifying your API code directly? In this talk, we will
explore one technique for building a serverless B2B
authorization service that sits in front of any (or all) of
our APIs and can be configured to be flexible enough
for specific endpoint permissions. Additionally, we
will explore how we can use a single lambda author-
izer function across AWS API Gateway resources to
scale our authorization checks independently of the
application layers themselves. While we will be using
AWS services for this talk, the principles can be
applied to any cloud provider as well.

Jeff Williams is the Co-Founder and Chief Technology
Officer of Contrast Security, the industry's most mod-
ern and comprehensive Application Security Platform,
focusing on fully automated application security at
DevOps scale and speed. He is also a founding mem-

ber and major contributor to OWASP, where he served as Glob-
al Chairman for eight years and created the OWASP Top 10,
OWASP Enterprise Security API, OWASP Application Security
Verification Standard, XSS Prevention Cheat Sheet, and numer-
ous other widely used free and open projects.

http://www.apiconference.net
https://apiconference.net/api-security/api-authorization/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

8apiconference.net

WHITEPAPER API Design

by Matthias Biehl

Think about it, once such a spacecraft has been launched
and is out in space, it needs to work flawlessly! If some-
thing unexpected happens, you cannot just order a ser-
vice technician to check what’s wrong. Once launched,
spacecraft are simply out of reach, travelling far away
and at high velocity, which makes it impossible to
change any aspect of their design. And with this in the
back of their mind, space engineers do everything to get
them prepared for launch day. They know they have just
one chance to get it right.

And with APIs? At first sight, the engineering of APIs
is much different from the engineering of a spacecraft.
After an API has been launched, you could easily change
it. The code is right there, the gateway configuration is

at your fingertips, and pushing out a change is a matter
of seconds.

But should you? And I am not talking about fixing
bugs – of course, you should fix them – I am talking
about design changes. Unlike with spacecraft, all the ar-
tefacts you need for a change seem to be available and
within reach – so why wait?

When an API gets published, it starts to get used by
API consumers. It just means that the API consumers
write application code that calls the API. And in this
code, they "bake in” a reasonable assumption about
the API: that it will stay exactly as it was at develop-
ment time. This assumption is completely reasonable
because it allows making an API call in a simple man-
ner. But this assumption also makes applications very
sensitive to changes in the API specification. You could

API as spacecraft

What the James
Webb Space
Telescope Can
Teach Us About
Engineering APIs
Have you seen some of the images of deep space taken by the James Webb tel-
escope? As much as these images make me marvel at the universe, they are also
a testament to the capability of today’s space engineering, which is capable of
designing, building, and operating a telescope on a spacecraft far from Earth that
delivers these images.

http://www.apiconference.net

9apiconference.net

WHITEPAPER API Design

say that most applications are inflexible to API changes
and that even the slightest change will break them. By
and large, applications rely on unchanged APIs. And
today, with APIs being used in business-critical appli-
cations, many businesses depend on the used APIs to
run in exactly the same way as they did the day before.

As a side note, the HATEOAS [1] principle would
not require you to make the above assumption, be-
cause it introduces a level of indirection and dynamic
discovery of the API endpoint. But it adds to the com-
plexity for the API consumer and is thus not widely
used in practice. So HATEOAS is excluded from this
article.

When you have a number of API consumers, some
of them depend on one set of data fields, and others
depend on another set of data fields. For each aspect of
your API, you can find an API consumer that depends
on it. And as Hyrum's Law tells us, this dependency
is not limited to the documented features in your API
contract (i.e., your Open API specification) but per-
tains to any observable behaviour of the API. With a
sufficiently large group of API consumers, you cannot
easily change the design without breaking some code
and creating problems for at least one of the API con-
sumers.

Even though we could readily change APIs – we
should not do it. Once an API is published, API consum-
ers depend on it, and API changes will break their ap-
plication. Or as Amazon CTO Werner Vogels phrased

it in his best practices for APIs: “APIs are forever.” They
cannot be changed.

Be agile before launch day
and conservative afterwards.
It helps to take a space engineering mindset and think
of an API as a spacecraft. Before you launch, you can
change the design, iterate on it and work on it in an
agile, iterative fashion, where feedback is readily in-
corporated into its design. The same holds for an API
before publication when it is in the initial design and
prototyping phase – maybe even in the implementa-
tion phase. But launch day changes everything. After
launch, the spacecraft is physically out of reach for de-
sign changes. And for APIs, you should think about
your deployment to production and publication of the
API in the same way. But since all artefacts are physi-
cally within reach, you need to set up some rules to
prevent design changes.

And if you (or an important API consumer of yours)
wanted to change the API anyway? Well, you would
need to handle it in exactly the same way as you would
change a spacecraft: You would go to the work shed
and build a new version of the spacecraft – with the
new, improved design – and you would launch it into
space. Sounds costly? It would not only be costly for a
spacecraft, but also for an API. When you introduce a
new version of an API, while the old version remains
as is, the effort for running and maintaining the API
doubles.

As for the design of a spacecraft, you need to get the
design of your API right the first time! It will be out
there forever. Designing an API is not "rocket science,"
but the mindset of space engineering will help you to
create dependable APIs that your API consumers can
rely on.

Matthias Biehl is an API Strategist at Software AG [2].
He empowers customers to discover their opportuni-
ties for innovation with APIs & ecosystems, define ac-
tionable digital strategies and execute API initiatives.
Based on his experience in leading large-scale API in-

itiatives in both business and technology roles in banking, in-
surance, media, government, and telco, he shares best
practices and provides strategic guidance. Matthias is the au-
thor of several books on APIs, [3] runs the API-University [4],
and regularly speaks at technology conferences.

Intentional API Design Workshop:
How to Build the Right APIs and How
to Build APIs the Right Way
Matthias Biehl (API-University.com)

We’ll learn how to design APIs that are
useful for the stakeholders. We will work
with identifying the users of the API,
what qualities they value in an API, the
outside-in design approach, and the

API-as-a-product design philosophy. We will study
the API lifecycle, how it relates to API design, and
how we can iterate from a good API design to a great
API design. We will then focus on intentional API
design. This is based on the simple fact that designed
artifacts such as APIs embody all decisions that went
into making them, whether those design decisions
were intentional and deliberate or unintentional and
haphazard. In this workshop we will show how to
make every aspect of API design more “intentional”
and something we consciously design, choose and
decide. We’ll focus on RESTful API design, however,
the overarching intentional API design framework
with Frontend API Design, Backend API Design, and
API Design for non-functionals can be used for other
styles of APIs as well.

Links & References

[1]	 https://api-university.com/blog/rest-apis-with-hateoas/

[2]	 https://blog.softwareag.com/author/matthias_biehl/

[3]	 https://api-university.com/books/

[4]	 https://api-university.com/

http://www.apiconference.net
https://apiconference.net/api-design/intentional-api-design-workshop/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23
http://API-University.com
https://api-university.com/blog/rest-apis-with-hateoas/
https://blog.softwareag.com/author/matthias_biehl/
https://api-university.com/books/
https://api-university.com/

10apiconference.net

WHITEPAPER API Design

in deploying multiple different database technologies
which add to the fabric of your data infrastructure and
the complexity grows.

However, this data infrastructure will then need to
be managed over time as well. Each database technol-
ogy used needs to be deployed, configured, secured,

Proactively looking at data services and APIs together

Preventing Data
Infrastructure
Sprawl – What
Developers Can Do
For developers, building applications is exciting - who doesn’t want to create the
next generation app that customers love? However, the way we build applications
today in the cloud leads to potential problems around data, finds Ovais Tariq,
CEO at Tigris Data.

API Design Review – Do I Really
Need That?
Thilo Frotscher (Freelancer)

Prior to implementing an API, it is
essential to think about the API’s design.
And like all other artifacts of software
development, this design should also be
subjected to an expert’s review. What

should be paid attention to? Which quality features
can be ensured even in this early phase, and which
pitfalls can be avoided? This talk provides valuable
advice from many years of practical work on HTTP-
based APIs.

by Ovais Tariq

As we get more data from our applications, we have to
organize this, and it leads to more infrastructure. To deal
with the problem of data infrastructure sprawl, we have
to understand why this sprawl takes place, and then be
proactive in how we approach the issue. By looking at
data services and APIs together, we can improve how we
support data over time.

Microservices and data
While traditional applications would use a single da-
tabase that would act as its data store, modern ap-
plications are designed based on connecting multiple
microservices. Using microservices running in software
containers offers more flexibility and freedom in how
to build an application, but this compartmentalized ap-
proach does require more database instances to capture
all the data that is created.

Rather than a couple of large databases that hold all
the data involved, each application might have thirty or
forty database instances to capture and store data from
each microservice over time. This is exacerbated by the
need to use different data models and functionality such
as search, indexing and event streaming. This results

http://www.apiconference.net
https://apiconference.net/api-design/api-design-review/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

11apiconference.net

WHITEPAPER API Design

monitored, and maintained as infrastructure compo-
nents. This can take developers away from the work
that they love doing, and put their focus on opera-
tional tasks instead. This slows down the innovation
process.

To diagnose this as a problem can be difficult. When
you start small, developers will often pick a database
that they are most comfortable with, and that they
can get running quickly. This will normally lead to
them using the same database for multiple use cases,
and where some of them are not good fits. For ex-
ample, developers will typically start with a database
like MySQL for OLTP workloads, then try to apply
this for other workloads like full text search and for
analytics. But because existing database technologies
are not flexible enough to continue to support diverse
workloads as the application scales or the needs of the
application evolves, they end up going to a complicat-
ed data architecture with multiple different database
technologies.

Cloud service providers can offer services that can
step in to reduce some of the management overhead.
These providers have proven time and time again that
the platform approach is popular. Picking a cloud pro-
vider and locking into their tech stack can give you
some reduction in operational costs and effort. But all

Accelerating Developer Experience
with API Design First
Travis Gosselin (SPS Commerce)

Modern HTTP APIs practically run the
contemporary tech world. The number of
APIs your organization is actively
building and maintaining is evidence of
that, and you need no convincing of the

value of API Design First principles. However,
introducing an API Design First process and method-
ologies can be fraught with too much manual effort,
slow progress, inconsistencies, and further chaos as
your organization scales. Much of this friction can be
alleviated by developing a mature API Design First
process within the organization supported with
first-class tooling and automation. In this talk, we will
dive into the principle areas of API Design First
across its lifecycle as we discuss how to accelerate
value in design, development, governance, documen-
tation, and change. Whether you already have
established API Design First methodologies or are
considering how to effectively adopt it, you will leave
with a practical understanding of effective processes
and governance. Experience how SPS Commerce
thinks about API Design First with a strong prefer-
ence towards governance through collaboration,
along with examples of key processes that simply
must be automated to succeed in an API-First world.

the cloud providers are doing is providing you “as a
service” instances of the popular database technolo-
gies. This does not solve the data infrastructure sprawl
problem.

Fixing infrastructure sprawl starts with
developers
Solving this problem is about managing data more ef-
ficiently as a basic principle, and then treating this as
a product in its own right. This means looking at how
data gets used with APIs.

From a developer perspective, interactions around
data can be very simple - they want to use the standard
set of actions CREATE, READ, UPDATE and DELETE,
termed CRUD. Alongside these actions, developers may
have to set up streaming or search services to meet user
demands within an application. Putting these behind
APIs can make the process easier for developers.

However, having those data services accessed through
APIs rather than deploying as multiple databases is not
an effective solution to the problem on its own. If the
whole system is not cohesively built, then you still have
to learn these different APIs. It shifts some of the infra-
structure sprawl burden, but it doesn’t solve the man-
agement overhead.

Using APIs alone also doesn't take away the fact that
you need to connect all these systems together. To solve
this effectively, you need to think about consolidating
your platforms and APIs at the same time, so that you
can serve all the different use cases related to data that
your application developers will have over time.

This “universal API” approach has to take a platform
approach into account in order to be effective. Rather
than building applications with dozens of infrastructure
components exposed to the developers, instead devel-
opers should be able to access these diverse functions
through a single common interface. Instead of having
to worry about data flowing between disparate systems,
data should be available across these different functions
automatically.

Working with more data in interesting ways is essen-
tial to how developers deliver what businesses want.
However, this has to be considered in the longer term,
so that the sheer volume of data, services and require-
ments does not overwhelm your team with infrastruc-
ture sprawl.

Ovais is the CEO of Tigris Data, where he leads the
team building the world’s first truly open source de-
veloper data platform. Prior to Tigris Data, Ovais led
data and storage engineering teams in solving some
of the toughest problems around developer produc-

tivity around data, including work at Uber, Khoros and Percona.

http://www.apiconference.net
https://apiconference.net/api-design/developer-experience-api-design-first/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

12apiconference.net

WHITEPAPER API Management

by Mark Stone

Engineering organizations constantly face choices bet-
ween how performant the applications they develop
will be, and how frictionless the development process
will be for software engineers. Too much emphasis on
raw performance saddles developers with a complex,
constrained development process. Too much emphasis
on ease in development (and thus rapid time to mar-
ket) can yield an application that simply isn’t perfor-
mant enough to go to production. There is no right
answer to this tradeoff that works for all applications
and all developers, so giving organizations options is
essential. A data API gateway like Stargate [1], paired
with a NoSQL database like Apache Cassandra [2] is
a great way to ensure an optimal balance for your pro-
jects.

With Cassandra, developers get a database with limit-
less scale, fast writes, and, with the right data model
— fast reads — all of which are ideal for real-time appli-
cations. With Stargate, enhanced now in version 2, de-

velopers get the flexibility to choose APIs and SDKs that
fit their performance requirements and fit the idiom in
which they are comfortable expressing data interactions
in their applications:

•	CQL API, for driver-managed queries
•	CQL over gRPC API, for queries via Stargate’s gRPC

client libraries
•	GraphQL (Schema First) for GraphQL queries

against an existing Cassandra data structure
•	GraphQL (GraphQL First), for creating and interac-

ting with a schema entirely from within GraphQL
•	REST API, for language-independent CQL queries

over HTTP
•	Document API, for JSON-based data structures that

don’t require a pre-existing schema

Let’s look at how each of these APIs deliver an ideal
combination of performance and flexibility tradeoff,
and how Stargate v2 improves the control organizations
have over these tradeoffs.

A gateway to flexibility: Stargate and Apache Cassandra

Freedom of Choice
with Apache
Cassandra and
Stargate
Stargate APIs unlock Apache Cassandra® data for developers. In the challenge of
balancing application performance with flexibility in application development,
Stargate and Cassandra deliver great freedom of choice. Now developers are in
control of the performance-productivity balance, choosing from a range of Star-
gate Web APIs and Drivers for Cassandra. And with the new version of Stargate v2,
operators get even greater flexibility in how to operate Stargate by deploying and
scaling APIs independently.

http://www.apiconference.net

13apiconference.net

WHITEPAPER API Management

CQL API and gRPC API
Making CQL queries from a gRPC client library via
the gRPC API and querying from a driver via the CQL
API offer the best raw performance. With Stargate V2’s
high-performance gRPC implementation, performance
now has demonstrated parity with native drivers. This
is due to Stargate v2 exploiting every aspect of the gRPC
protocol: unary, client-side streaming, server-side strea-
ming, bidirectional calls, and Google’s improved seria-
lization for gRPC.

One can, of course, make driver calls directly against
Cassandra without the need for Stargate. By introducing
Stargate, we separate coordinator nodes from storage
nodes. This enables better performance by allowing
us to tune coordinator nodes for compute-heavy wor-
kloads and storage nodes for storage-heavy workloads.

Drivers introduce some management complexity into
application development (load balancing, retries, TLS
termination, etc.), and not all open-source drivers are
equally well supported. If you are considering drivers,
you may want to first:

•	Check if a supported driver is available for your lan-
guage and language version

•	Consider the friction of management complexity
•	Consider the potential for downtime in the event of

needing to mirror network configuration updates in
the driver

In these situations, Stargate’s gRPC libraries will be a
better choice. Network management is handed off to the
Stargate gRPC API, where it is handled automatically.
This is a more cloud-native way to architect an applica-
tion environment. Stargate currently offers gRPC libra-
ries for Java, Go, Node.js, and Rust, and a new library in
a language not yet covered can be added with relatively
little effort. The Stargate community welcomes and will

actively support new gRPC clients, so it’s a great time
to get involved [3].

GraphQL API
GraphQL is an HTTP-based API similar in many ways
to the REST API. However, GraphQL offers more targe-
ted key-value querying than one can easily do in REST,
thus avoiding REST’s over-fetching or under-fetching
problem.

Stargate’s GraphQL API is really two APIs:

•	Schema first, well suited for querying against existing
Cassandra data that already has a defined CQL sche-
ma.

•	GraphQL first, in which no pre-existing schema is
presumed, and GraphQL itself will be used to create
the schema. This approach can be very effective for
rapid prototyping and early development, particular-
ly when combined with the GraphQL Playground.

So, while APIs based on HTTP 1.0 are inherently slower
than native driver calls over CQL, or gRPC calls over
HTTP 2.0, GraphQL offers a lot of flexibility in terms of
how to structure queries, and easy exploration via Gra-
phQL Playground. The efficiency of GraphQL’s queries
also makes it more performant than the REST API or
Document API.

REST API
In some situations, neither native drivers nor gRPC will
offer support for your language, or language version. It
may also be that raw performance is not the key consi-
deration in your application environment. In this case,
the flexibility of the REST API works well. CQL queries
are delivered via HTTP, meaning you can write those
queries in any language you choose. You’ll still see some
performance benefit from querying structured data

Figure 1: Deve-
loper Freedom
of Choice with
Stargate	

http://www.apiconference.net
http://Node.js

14apiconference.net

WHITEPAPER API Management

against a known structure (in contrast to schema-less
data like JSON documents).

Document API
The popularity of JavaScript (including Node.js and
its siblings like TypeScript) has made JSON the most
pervasive data structure in modern application develop-
ment. Many application developers would prefer not to
think about the underlying database at all, and instead
simply think of their data in terms of JSON.

For this broad set of use cases, Stargate’s Document
API can be a great solution. The API does not assume
or require a pre-existing schema, and instead relies on a
process called “document shredding” [4] to turn JSON
documents into Cassandra tables, and then rebuild tho-
se tables into JSON when queried.

Naturally, working in a schemeless idiom in this man-
ner introduces overhead, which impacts performance.
Nonetheless, the freedom and flexibility of building
JSON on the fly can be a powerful accelerator of deve-
loper productivity. The Document API can be a great
choice for rapid prototyping and early development for
precisely this reason. In application environments where
the performance requirements are not too stringent, the
Document API may offer the fastest time to market for
application development.

An ounce of prevention often beats a pound of cure.
When your JSON is well- or even semi-structured, con-
sider using Stargate’s Document API support for JSON
schema [5]. JSON schema reduces hard-to-debug-at-
runtime errors by validating data as well as making do-
cumentation, annotation, and automated testing easier.

Improving Flexibility with Stargate v2
Most organizations focus on a single language for
development, and a single API for data interaction.
Consequently, Stargate V1’s monolithic architec-

ture introduced some inefficiencies. To deploy any of
Stargate’s APIs, you had to deploy all of them; to scale
any of Stargate’s APIs, you had to scale all of them.

In this respect, Stargate v2’s pluggable, modular ar-
chitecture is a game changer. Now each API is deplo-
yed as its own independent service. Your organization
doesn’t need to deploy APIs you won’t be using. Even if
you use multiple APIs, almost certainly you won’t use
them all equally. So the flexibility to scale APIs indepen-
dently is a key boost to operational efficiency.

This modularity also makes Stargate more extensible.
Is there another API your organization needs? Maybe
you need a more purpose-built API rather than a ge-
neral-purpose API. Perhaps there’s an entirely different
database other than Cassandra that you’d like to plug
in, or another database alongside Cassandra with which
you’d like to federate?

Because Stargate is open source, you have this free-
dom of choice. Because Stargate v2 provides modular
services, exercising this freedom is now a practical rea-
lity. With Stargate, Apache Cassandra can now be used
for a wider range of use cases, by many more types of
developers.

Stargate deploys anywhere — Docker, K8ssandra,
bare metal/VM, and soon you’ll be able to use it from
the Amazon Web Services [6] and Google Cloud mar-
ketplaces [7]. You are also welcome to skip installati-
on and play around with it on the DataStax Astra DB
[8] free plan.

Mark Stone is a technology veteran with many years
of experience in product management, program ma-
nagement, and people management. Always working
as part of the connective tissue between business sta-
keholders and technical stakeholders, Mark loves

championing the developer experience in technology platforms
and helping organizations meet developers where they are.
With a rich background in both agile and open source, Mark
firmly believes in the power of collaboration and bottom-up
innovation.

Putting Yourself Out There –
How to Secure Your Public APIs
Dan Erez (AT&T)

APIs are the common endpoints for
applications, allowing the consumption
of services and connecting systems and
users. But when your APIs are public,
which is the case with web applications’

back end (or when you actually want others to
consume your APIs), it presents some serious security
questions. For example: how do you authenticate?
How do you rate limit? How do you minimize your
cost while ensuring the needed SLA? In this session,
I’ll review the best practices and up-to-date ways to
deal with these (and many other) questions to enable
you to face the world without fear!

Links & References

[1]	https://stargate.io/

[2]	https://cassandra.apache.org/_/index.html

[3]	https://github.com/stargate/stargate/blob/v1/CONTRIBUTING.md

[4]	https://stargate.io/2020/10/19/the-stargate-cassandra-documents-
api.html

[5]	https://stargate.io/docs/latest/quickstart/qs-document.html#add-json-
schema-to-a-collection

[6]	https://aws.amazon.com/marketplace/seller-profile?id=6c121bc6-9f22-
421b-9957-ac944e83c141&ref=dtl_B095YKJVKY

[7]	https://console.cloud.google.com/marketplace/browse?q=datastax

[8]	https://auth.cloud.datastax.com/auth/realms/CloudUsers/
protocol/openid-connect/auth?client_id=auth-proxy&redirect_
uri=https%3A%2F%2Fgatekeeper.auth.cloud.datastax.
com%2Fcallback&response_type=code&scope=openid+profile+email&st
ate=7EsXXz3yu5QMZQ2iCyRjKVHFutc%3D

http://www.apiconference.net
http://Node.js
https://apiconference.net/api-security/security-public-apis/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23
https://stargate.io/
https://cassandra.apache.org/_/index.html
https://github.com/stargate/stargate/blob/v1/CONTRIBUTING.md
https://stargate.io/2020/10/19/the-stargate-cassandra-documents-api.html
https://stargate.io/2020/10/19/the-stargate-cassandra-documents-api.html
https://stargate.io/docs/latest/quickstart/qs-document.html#add-json-schema-to-a-collection
https://stargate.io/docs/latest/quickstart/qs-document.html#add-json-schema-to-a-collection
https://aws.amazon.com/marketplace/seller-profile?id=6c121bc6-9f22-421b-9957-ac944e83c141&ref=dtl_B095YKJVKY
https://aws.amazon.com/marketplace/seller-profile?id=6c121bc6-9f22-421b-9957-ac944e83c141&ref=dtl_B095YKJVKY
https://console.cloud.google.com/marketplace/browse?q=datastax
https://auth.cloud.datastax.com/auth/realms/CloudUsers/protocol/openid-connect/auth?client_id=auth-proxy&redirect_uri=https%3A%2F%2Fgatekeeper.auth.cloud.datastax.com%2Fcallback&response_type=code&scope=openid+profile+email&state=7EsXXz3yu5QMZQ2iCyRjKVHFutc%3D
https://auth.cloud.datastax.com/auth/realms/CloudUsers/protocol/openid-connect/auth?client_id=auth-proxy&redirect_uri=https%3A%2F%2Fgatekeeper.auth.cloud.datastax.com%2Fcallback&response_type=code&scope=openid+profile+email&state=7EsXXz3yu5QMZQ2iCyRjKVHFutc%3D
https://auth.cloud.datastax.com/auth/realms/CloudUsers/protocol/openid-connect/auth?client_id=auth-proxy&redirect_uri=https%3A%2F%2Fgatekeeper.auth.cloud.datastax.com%2Fcallback&response_type=code&scope=openid+profile+email&state=7EsXXz3yu5QMZQ2iCyRjKVHFutc%3D
https://auth.cloud.datastax.com/auth/realms/CloudUsers/protocol/openid-connect/auth?client_id=auth-proxy&redirect_uri=https%3A%2F%2Fgatekeeper.auth.cloud.datastax.com%2Fcallback&response_type=code&scope=openid+profile+email&state=7EsXXz3yu5QMZQ2iCyRjKVHFutc%3D
https://auth.cloud.datastax.com/auth/realms/CloudUsers/protocol/openid-connect/auth?client_id=auth-proxy&redirect_uri=https%3A%2F%2Fgatekeeper.auth.cloud.datastax.com%2Fcallback&response_type=code&scope=openid+profile+email&state=7EsXXz3yu5QMZQ2iCyRjKVHFutc%3D

15apiconference.net

WHITEPAPER API Platforms & Business

like what it may first sound like, interoperability is not
only about technology and technical connectivity. On
the contrary, interoperability consists of different layers
that also include technology. The European Interoper-
ability Framework (EIF) [1] defines four layers of inter-
operability:

Digital essentials

The Role of APIs
in Digital Govern-
ment Context
Connecting information systems, applications, and registers, exchanging data, and
sharing services are essential requirements for any digital service. Government and
the public sector are no exception. The ability to exchange data and share services
between government entities and authorities is a must-have requirement when pub-
lic services are digitised. Also, the need is not limited to data exchange capabilities
between government entities since the ability to exchange data and share services
between public and private sectors is evenly essential.

10 Key Mistakes In Your API Docs and
How to Avoid Them
Anil Kumar Krishnashetty (Lokalise)

In this talk, we will reveal common
mistakes you should avoid while creating
API docs and developer portals. Anil will
share some tips and tricks on what it
takes to build a great developer portal

that developers will love to use. This talk will present
some good examples of various developer portals
and use cases.

by Petteri Kivimäki

Digital transformation is converting or substituting ana-
logue processes with their digital counterparts. One of
the goals of digitising public services is to reduce admin-
istrative burden and provide citizens with streamlined
digital processes spanning multiple administration sec-
tors. From a citizen's point of view, it means no more
filling in paper forms and visiting different government
offices. The required information is exchanged in the
background automatically between the concerned au-
thorities without further involvement of the citizen. This
results in a single, streamlined online process that hides
the underlying complexity from the citizen. Besides, it
significantly reduces manual work required from differ-
ent authorities and enables the development of new ser-
vices. Getting there is impossible without sharing data
and services between authorities and the public and pri-
vate sectors.

Different shades of interoperability
The ability of information systems to exchange and
utilise information is known as interoperability. Un-

http://www.apiconference.net
https://apiconference.net/api-design/api-documentation/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

16apiconference.net

WHITEPAPER API Platforms & Business

•	Legal – aligned legislation
•	Organisational – coordinated processes
•	Semantical – precise meaning of exchanged informa-

tion
•	Technical – connecting information systems and

services

All four layers are equally important when building digi-
tal services and processes. In addition, challenges in one
layer are often reflected in other layers. Therefore, it is
essential to be aware of all the layers and not neglect
them.

Data exchange scenarios
When it comes to a public sector organisation exchang-
ing information, three top-level data exchange scenarios
can be recognised:

•	Internal – data exchange within an organisation
•	National – data exchange on a national level
•	Cross-border – international data exchange

The same rules, laws, and regulations don't apply to
national and cross-border data exchange, which is why

they are two separate scenarios instead of a single "ex-
ternal" scenario. Cross-border data exchange between
authorities usually requires both state-level agreements
and data exchange agreements between the data ex-
change parties.

The common factor between the scenarios is that all
three require certain technical base elements, includ-
ing but not limited to connectivity, secure communica-
tion protocols, interfaces, and integration services. The
more standardised these elements are, the less work is
required to build new connections between information
systems and services. Instead, if there is no commonly
agreed solution to connect information systems and
manage the connections securely, the result is probably
a jungle of point-to-point connections. It means agree-
ing on the connection details and then building the con-
nections whenever a new connection is needed – and
doing so repeatedly.

However, even if the technical base elements in all the
scenarios are the same, they are usually implemented
using different technical solutions and technologies.
Implementing a standardised connectivity layer within
an organisation is generally based on other technology
than a standardised connectivity layer with external
parties.

The good news is that there are already technical so-
lutions and building blocks available that can be used
for secure data exchange in different scenarios. Instead
of reinventing the wheel and building everything from
scratch, it is possible to use off-the-shelf, battle-proven
solutions that have already been successfully used in
multiple implementations. For example, eDelivery [2] is
the building block of the European Commission for
cross-border data exchange between the EU Member
States. At the same time, X-Road® [3] is open-source
software and ecosystem solution that provides unified
and secure data exchange on a national level.

The once-only principle
The once-only principle (TOOP) [4] is a digital govern-
ment concept initiated by the European Union (EU),
whose aim is that citizens, organisations, and companies
provide certain information to authorities and adminis-
trations only once. The data is then reused by sharing it
between the authorities that have a right to access it. In
this way, the information is collected and stored only
once. In practice, if specific information is already col-
lected and stored by one authority, another authority

Why Your API Doesn’t Solve My
Problem: Putting Use Cases First
Jan Vlnas (Superface)

You wrote an API specification, docu-
mented your endpoints, and published
SDKs. Here’s a question, though: Does
your API actually solve your users’
problems? Providers often focus on

features and underlying technologies of their APIs,
while failing to address the use cases their API is
used for – or their assumptions don’t match the
reality. Developers integrating the API are frustrated,
spend extra time on integration analysis, or look for
another provider. Let’s take a closer look at API
integrations from a developers’ perspective. In this
session, I will show how to discover, prioritize, and
present use cases for your API, how to include use
cases in API design, and how to empower users to
solve their problems using your API more easily.

 Instead of reinventing the wheel and building
everything from scratch, it is possible to use off-the-

shelf, battle-proven solutions that have already been
successfully used in multiple implementations.

http://www.apiconference.net
https://apiconference.net/api-platforms-software-as-a-service/api-design-use-cases/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

17apiconference.net

WHITEPAPER API Platforms & Business

Introducing Leaf Computing
Jeremiah Lee (Vässla)

API design up until now has been guided
by the assumption that the server is
authoritative and the client is subservi-
ent. “Leaf computing” challenges this
assumption with a new paradigm for

designing APIs, where clients are authoritative and
autonomous, but no less connected. This application
architecture gives users control over their data and
limits the operational costs and security liabilities of
the provider. This talk walks through several common
API integration patterns and reimagines them for a
less cloud-y future.

across administration sectors, borders, and public and
private sectors.

Interoperability is not just about technology – it in-
cludes legal, organisational, and semantical layers as
well. The other layers are equally important and require
collaboration across administration sectors and bor-
ders. Otherwise, there is a risk that innovations cannot
be utilised, or they can be used only partly because of
legal or administrative restrictions.

All in all, APIs are one of the key enablers in the digi-
tal government context. Still, they are not a silver bullet
alone enough to resolve all the interoperability chal-
lenges. Collaboration in all areas of interoperability and
the use of open standards, frameworks, and open-source
solutions are the key to success.

Petteri Kivimäki is the CTO of the Nordic Institute for
Interoperability Solutions, a non-profit association
dedicated to the development and strategic manage-
ment of X-Road® and other cross-border components
for digital government infrastructure. He was the

technical lead of the X-Road implementation project in Finland,
as well as the coordinator of the joint open-source develop-
ment of the X-Road solution between Finland and Estonia. Pet-
teri holds a Bachelor of Science in Software Engineering from
the Metropolia University of Applied Sciences, Finland, and he
is a certified cloud and technology architect.

Links & References

[1]	https://joinup.ec.europa.eu/collection/nifo-national-interoperability-
framework-observatory/european-interoperability-framework-detail

[2]	https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/
eDelivery

[3]	https://x-road.global/

[4]	https://toop.eu/once-only

that needs the same information should query it from
the owning authority instead of asking it again from the
citizen.

The basic idea behind TOOP sounds simple but im-
plementing it in practice is more complicated. First, it
requires accessibility and interoperability of base regis-
ters and other related information systems and services.
Implementing TOOP is impossible without APIs – they
are needed to enable data exchange between the au-
thorities. In addition to APIs, successful implementation
requires a secure data exchange solution, unified data
models, and semantic interoperability across different
information systems and applications. Otherwise, utilis-
ing the data is challenging. Besides technical questions,
there are also legal and administrative issues that must
be considered.

Cross-border data exchange
Technically, cross-border data exchange should not dif-
fer from data exchange on a national level. APIs enable
data exchange across borders, just like within a single
country. However, in practice, there are probably more
differences in the APIs between authorities of two coun-
tries than between two authorities of the same country
because some sort of guidelines is likely to exist nation-
ally. Generally, API guidelines and best practices are
global and utilise various internet standards. However,
the challenge is that many commonly used guidelines
and practices are not official standards, leading to differ-
ences in implementation between authorities and coun-
tries. This does not prevent the data exchange, but the
implementation requires more effort.

When it comes to the bigger picture, APIs alone are
not enough for the implementation of successful cross-
border data exchange. Like TOOP, it also requires se-
cure data exchange solutions, compatible data models,
and semantic interoperability. Also, legal and admin-
istrative questions play a significant role – often, their
part is even greater than technical questions. There
may be legal barriers, and in many cases, agreements
and contracts are required at two levels – between the
countries whose authorities exchange data and be-
tween the parties that implement the data exchange in
practice.

Not a silver bullet
APIs play an essential role in digital government ser-
vices. Without them, many of today's and tomorrow’s
digital services would not be possible or would re-
quire a considerable amount of work in the form of
custom integrations. Therefore, APIs are a key enabler
in digital transformation. Still, other vital elements are
also needed in addition to APIs, such as secure data
exchange solutions, unified data models, and seman-
tic interoperability. These areas can and should be
considered when APIs are designed and implemented.
Interoperability on a broader scale requires stand-
ards, common guidelines, practices, and collaboration

http://www.apiconference.net
https://apiconference.net/api-design/leaf-computing/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23
https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/european-interoperability-framework-detail
https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/european-interoperability-framework-detail
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery
https://x-road.global/
https://toop.eu/once-only

18apiconference.net

WHITEPAPER Microservices

The trend towards operating services in the cloud has
also been taken up by API gateway manufacturers. They
are currently changing their systems away from mono-
lithic gateways to so-called micro-gateways, which are
more in line with cloud philosophy.

Thus, the question arises whether one wants to ful-
fill the requirements for the operation and management
of the APIs with a more or less classic API gateway or
whether it is better to switch to a service mesh tool. Or
is a mix of these two tools the better solution approach?

Functional scope of “classic” API gateways
This is not the place for a product comparison of dif-
ferent API gateways, but all common representatives
of this guild, such as Google Cloud Apigee, Red Hat
3scale, MuleSoft, Kong or WSO2, generally offer the
following functionalities.

API applications: This refers to the logical grouping of
different APIs into a common application that can then
be administered and operated as a whole.

Rate Limiting and Throttling: This defines how many
API calls may be made within a certain time interval. If
this limit is exceeded, the call is rejected with an error
message. In most cases, an HTTP status code 429 (“Too
Many Requests”) is sent to the caller. The limit is of
a technical nature in order not to overload the called

IT depends...

API Gateway or
Just a Service
Mesh Tool?
Large software systems usually do not exist alone and often have many partner
systems calling its APIs. The number of partner systems can quickly reach double
digits. The smaller the services are cut, which currently tends to happen in pro-
jects, the higher the number of partner systems that must be called. An exten-
sive communication network is thus established: a so-called service mesh.

by Michael Hofmann

The topic of APIs is even more important today than it
was in the past, because the mistakes of earlier times are
not wanted or allowed to be made again today. Fortu-
nately, direct access to the database of another service
is no longer on the list of project managers or software
architects. Instead, more and more interfaces are emerg-
ing as APIs according to Richardson’s REST Maturity
Model. At the same time, there is a growing desire for
coordinated, controlled, and managed access to APIs.
Which is not very surprising considering the increasing
number of APIs.

The consideration of using an API gateway to man-
age these interfaces in an initial response is perfectly
understandable. But on closer inspection, the question
arises as to which functions of the API gateway should
be used. Often, the requirements for managing and op-
erating APIs are less than the feature set that API gate-
ways provide. On the other hand, to manage the service
mesh, one should think about using a suitable service
mesh tool. From a certain size of the service mesh or a
certain complexity of the communication behavior of
the services, there is no way around it. Istio would be a
representative of the service mesh tools that specialize in
operation on a cloud platform.

http://www.apiconference.net

19apiconference.net

WHITEPAPER Microservices

system. Throttling occurs when no more requests are
allowed within the specified time interval after the limit
has been exceeded. Only after this interval has elapsed
further requests are allowed again.

API Quota: This functionality is focusing the com-
mercial aspect of API access. As a rule, the call limit is
agreed upon here for a longer period than is the case
with rate limiting. For example, one specifies that the
API may only be called a thousand times per month. In
addition, this limit is set separately for each consumer
and then often also leads to the possibility of separate
billing of call costs per consumer. Some API gateways
allow defining these quotas on API applications.

Load balancing with failover: Since every request
to an API is routed through the API gateway, they are
also able to offer more or less extensive load balancing
with integrated failover. It should be analyzed in detail
whether the API gateway is able to react dynamically
to changes in the runtime availability of the services or
whether it only enables a static configuration of the ex-
isting API endpoints.

Access Control: Today, no productive system can do
without security and access control. It goes without say-
ing that API gateways also offer this. Different security
settings can be defined for different API applications in
order to regulate the access options of the various user
groups to the APIs. A connection to common OAuth
or OpenID Connect servers is now state of the art. Set-
ting or manipulating the HTTP header is also part of the
gateway’s basic equipment.

Logging: Every request that is controlled by the gate-
ways must of course also be logged. Logging with a
higher or lower level of detail is possible in every API
gateway.

Management GUI: For managing the APIs, the com-
mon API gateways all offer a graphical user interface.
However, a technical interface for automated configu-
ration of the APIs is not available in each of the API
gateways. Deployment of new or modified APIs, trig-

gered by an event in the CI/CD pipeline, is therefore not
always easy to implement.

Monitoring with analytics: Some of the gateways of-
fer extensions that can be used to further evaluate the
collected call data. The spectrum of applications ranges
from simple monitoring to complex analyses of the use
of the APIs. Some business models of API operators can
no longer do without such analytics results.

Developer portal: The API gateways offer so-called
developer portals to initiate external API partners or to
simplify API client development. There, it is often pos-
sible to access released APIs for testing one’s own client
via self-registration. These test environments are then
operated in a sandbox. Some APIs also offer SDKs for
the common programming languages to simplify entry
into API development.

API gateway functionality in a service mesh
tool
In the following, the functionality of the API gateways
will be compared on the basis of the service mesh tool Is-
tio. For an explanation of Istio, please refer to the article
“Don’t be afraid of the service mesh” (p. 26).

A few remarks beforehand: Istio only covers the tech-
nical aspects of the service mesh. For the commercially
oriented functionalities, such as billing, Istio currently
has no corresponding capabilities. Istio also does not
have analytics capabilities. Anyone who wants to ana-
lyze the calls to their APIs by customers even more pre-
cisely in order to draw more conclusions about their
behavior will, unfortunately, come up empty with Istio.
This is where API gateways offer add-on components
that better handle the analytics space. Istio offers exten-
sion points for the technical aspect of rate limiting and
throttling. API Quota functionality that goes beyond
pure rate limiting, such as limiting API calls for a specific
partner in a period of one month, is possible with the
same extension points for rate limiting. These extension

Listing 1
apiVersion: "networking.istio.io/v1alpha3"
kind: Gateway
metadata:
 name: mesh-gateway
spec:
 selector:
 istio: ingressgateway # use Istio default gateway implementation
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 # this gateway is for requests coming from all other hosts
 - "*"

Developing locally with Kubernetes –
a Guide and Best Practices
Dan Erez (AT&T)

Kubernetes is all over the place, and it’s
the de facto standard for deployments
nowadays. But, there’s a gap between
the way a developer develops on his or
her machine and the way the application

is running in production. This can cause issues, not
just due to the different environments, but also due to
different states of mind! In this session I’ll guide you
through developing locally with Kubernetes to narrow
this gap and even speed development and reduce
errors.

http://www.apiconference.net
https://devopscon.io/kubernetes-ecosystem/local-kubernetes-best-practices/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

20apiconference.net

WHITEPAPER Microservices

points have to be connected with additional services, in-
stalled and managed separately. Nevertheless, Istio of-
fers functionalities that are quite comparable to those of
API gateways.

Ingress Gateway and Virtual Service
An adequate way to logically group APIs into applica-
tions can be done with Istio through various Istio Ingress
Gateways in combination with Istio’s Virtual Service.
Ingress Gateways control the entry into the service mesh
in Istio. They can be defined with different routings in
the Virtual Services. From a technical point of view,
these routings are thus managed together.

The following Istio rules define an ingress gateway on
port 80 for HTTP accesses and connects it to a Virtual
Service that redirects to the myservice service in version
v1 for request URLs with the /status or /delay prefix
(Listings 1 and 2). This combination of Istio rules is ar-
bitrarily extensible and thus covers all requirements that
allow common control of API access.

Istio’s Rate Limits
A prerequisite for the dynamic limitation of requests to
a service by Istio is the activation of an additional back-
end and some configurations to connect to this backend.
The first approach of Istio to offer rate limits was a so-
called Policy Enforcement rule. This rule was declared
deprecated with Istio 1.6. Starting from Istio 1.9 there
are two new alternatives to define rate limits: EnvoyFil-
ter and WebAssembly. Both alternatives enhance the

Envoy proxy and delegate the service requests to a rate
limiting backend to check for allowing this request. A
reference implementation for this backend service, writ-
ten in Go with a Redis backend, exists. The open source
community maintaining the Envoy proxy is also respon-
sible for the Envoy RateLimit service. A Redis server is
needed to manage the quota values inside the service
mesh.

Envoy checks every HTTP request inside the service
mesh against all settings of the HTTP Filter. This HTTP
filter can be enhanced with a special Istio Rule EnvoyFil-
ter. In this rule all necessary settings must be defined to
connect and delegate the checks to a special rate limiting
backend service. Based on the response of this service,
Envoy proxy decides what to do with the request. When
a predefined limit is reached, the Envoy proxy interrupts
the access with an HTTP status code 429 (“Too Many
Requests”).

WebAssembly on the other hand is a sandboxing
technology to also enhance the Envoy proxy. A WebAs-
sembly plugin can be developed in several programming
languages and gets executed in a special WebAssembly
Runtime embedded in the Envoy proxy. It is planned to
have a growing ecosystem of WebAssemblies. Only the
creativity of a programmer limits this open program-
ming model and rate limiting can be one reason to use
this upcoming technology.

Inside the Envoy RateLimit service, the evaluation
window in which the analysis takes place can be selected
as fixed or rolling. With a fixed evaluation window, the
limits apply to the period from, for example, 9:00 to
18:00. The rolling window refers to the period of the
last 10 minutes, for example. To establish more com-
plex rate limits, multiple limits can be defined, which are
then evaluated and monitored in the specified order. It
is also possible to distinguish whether the request comes

Listing 2
apiVersion: "networking.istio.io/v1alpha3"
kind: VirtualService
metadata:
 name: httpbin
spec:
 hosts:
 # this VS is for requests coming from all other hosts
 - "*"
 gateways:
 # and is bound to the following istio ingress gateway
 - mesh-gateway
 http:
 - match:
 - uri:
 prefix: /status
 - uri:
 prefix: /delay
 route:
 - destination:
 port:
 number: 8000
 host: myservice
 # this subset must be defined in a DR
 subset: v1

OpenAPI3 Killed Hypermedia –
Why REST is Overrated
Thomas Bayer (predic8)

REST is popular, and a lot of APIs claim
to adhere to this architectural style. But
REST is not the best choice for every use
case and also comes with some disad-
vantages. At first glance, REST seems to

be simple. But designing a RESTful API is rather
complex: Should you use POST or PUT, a slash at the
end, query, or path parameters? And there are even
more drawbacks: the lack of a standard, REST’s
technical nature, and its propensity to a data-driven
design. In this session, you’ll get to know the
downsides of REST and why Hypermedia is being
killed by OpenAPI. Of course, you will also learn how
APIs can be fixed without too many changes.

http://www.apiconference.net
https://apiconference.net/api-development/openapi3-killed-hypermedia-why-rest-is-overrated/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

21apiconference.net

WHITEPAPER Microservices

from a logged-in user or not by validating an existing
JSON web token (JWT). Other HTTP request headers
can also be evaluated. In addition, special limits can be
established if the request is from a specific IP address.
These are just some of the possibilities Envoy RateLimit
service offers.

Istio has clearly focused on the technical limitation of
the requests. This also makes it possible to avoid denial-
of-service attacks (DoS).

A so-called API quota, as with an API gateway,
which is basically used for a billing model, can also be
implemented with Istio’s rate limit extensions, but the
API gateways offer these possibilities out of the box.
On the other hand the flexibility of Istio’s rate limit
is determined by the possibilities of the rate limiting
backend.

Load balancing and resilience
Istio, which is built on Kubernetes (other platforms are
also possible), works closely with Kubernetes when it
comes to load balancing. The runtime information of
the available Kubernetes pods that are accessed via a

Kubernetes service is also available to the Envoy proxy.
This enables the Envoy proxy to establish a client-side
load balancing. Istio’s Control Plane regularly informs
itself about the currently available pods of a service and
forwards this information to the sidecar. The sidecar can
then intelligently distribute the load among the available
pods. Together with the resilience rules (timeout, retry,
circuit breaker, and bulkhead), which are also evaluated
in the sidecar, problems in the calls can be compensated.
Thus Istio has capabilities that go far beyond those of
an API gateway.

Security
Istio provides its own security module (Citadel), which
takes care of certificates and mutual TLS. In addition,
Istio can be provided with Role-based Access Control
(RBAC) settings and an integration with JWT based au-
thentication is possible out of the box. Furthermore, the
evaluation or manipulation of request header values has
been possible in Istio for a long time.

Starting with mTLS, as one aspect of the wide range
of security, it is very easy to define how traffic will be

encrypted or not. By defining an Istio
rule PeerAuthentication mTLS can be
defined for the whole mesh, only for a
Kubernetes namespace and even only
for some services. To establish a migra-
tion path, mTLS can be defined in differ-
ent modes: PERMISSIVE or STRICT. A
PERMISSIVE connection can be either
plaintext or mTLS tunnel. STRICT forc-
es a mTLS connection. Istio manages all
necessary SSL certificates out of the box
and frees the admin from this annoying
activity. The following listing shows an
Istio rule which forces mTLS tunnels on
all workloads in namespace foo:

To enable access control on workloads
in the service mesh two different Istio
rules must be defined. The first rule, a Re-
questAuthentication defines what request
authentication methods are supported.
It validates the JWT in the authorization
header and checks whether it was issued
by the corresponding OpenId Connect
server. In listing 4 all requests to http-
bin workload in namespace foo will be
authenticated with credentials derived
from a JWT issued by issuer-foo coming
from OpenId Connect server example.
com:

The second rule, an Authorization-
Policy, enables all access controls based
on the JWT claim values validated by the
previous rule. The scope of this rule also
ranges from a complete service mesh to
a single workload. Multiple rules of this
type will be evaluated in a predefined

Listing 4
apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: httpbin
 namespace: foo
spec:
 selector:
 matchLabels:
 app: httpbin
 jwtRules:
 - issuer: "issuer-foo"
 jwksUri: https://example.com/.
well-known/jwks.jsonListing 5

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:
 action: ALLOW
 rules:
 - from:
 - source:
 namespaces: ["test"]
 to:
 - operation:
 paths: ["/data"]
 when:
 - key: request.auth.claims[iss]
 values: ["https://accounts.google.com"]

Listing 6
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:
 action: DENY
 rules:
 - from:
 - source:
 namespaces: ["dev"]
 to:
 - operation:
 methods: ["POST"]

Listing 3
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: foo
spec:
 mtls:
 mode: STRICT

http://www.apiconference.net

22apiconference.net

WHITEPAPER Microservices

order and if one rule matches, the request will be for-
warded to the service. Listing 5 defines an Authoriza-
tionPolicy which allows requests from namespace test to
HTTP Endpoint /data in namespace foo only if the is-
suer of the JWT is https://accounts.google.com:

An AuthorizationPolicy can also be defined as a DE-
NY-Rule. Listing 6 shows a rule to stop all HTTP POST
requests from namespace dev to namespace foo:

The previous security listings show only a small range
of Istio’s security capabilities. Thus, also in terms of se-
curity requirements, the functional scope of Istio is com-
parable to that of an API gateway, if Istio does not even
surpass the possibilities of API gateways here.

Logging and tracing in the service mesh
Without sufficient logging, no reasonable operation of
a service mesh is possible, as this usually requires a high
number of services. For this, Istio relies on the possi-
bilities offered by Kubernetes or the Docker containers.
Istio’s homepage describes how logging can be set up
with Fluentd. Creating a so-called EFK logging stack
(Elasticsearch, Fluentd, Kibana) is thus very easy. Istio’s
own components also use this logging stack.

With the possibility of distributed tracing based on
Jaeger or other components following the OpenTracing
standard, Istio offers a functionality that is naturally not
included in API gateways.

Kiali as a management GUI for Istio
Meanwhile, a GUI also exists in Istio to view your Is-
tio rules and other information important for managing
the service mesh. Kiali already provides help to get an
overview of the service mesh. Since Istio was first started

with a set of rules based on YAML files, it can be config-
ured very well with scripts. The execution of the scripts
can be integrated into an existing CI/CD pipeline. This
gives Istio a plus point, as scripting in API gateways is
not as prominent everywhere.

Developer portal
Istio does not offer the possibility to generate an SDK
for the client developer. Self-registration must also be
done with other systems. Only when it comes to sand-
boxing Istio is as good or bad as the API gateways. Usu-
ally, the biggest effort of sandboxing is to establish the
appropriate test or simulation environment. Once that is
accomplished, managing the sandboxes is only a much
smaller effort. Deleting, restoring, and assigning the
sandbox can be done very easily thanks to Kubernetes
and Istio’s scripting capabilities.

Conclusion
At the end of this article, let’s return to the beginning
and the question: How do you want to provide other
systems with coordinated access to your APIs? In order
to find a way out of the typical consultant answer “it
depends”, one should consider exactly which functions
of an API gateway are desired. Are the possibilities of Is-
tio or the other service mesh tools sufficient – especially
under the aspect that from a certain number of services
onwards a service mesh tool can no longer be dispensed
with? The consequence of this would be to operate a
pure API gateway as an additional component.

Because of the trend toward self-responsibility in pro-
jects and the associated self-responsible operation of all
components, project managers should consider carefully
whether additional systems are necessary to achieve the
project requirements. However, these considerations
should not be turned into the opposite by implementing
missing functionality oneself at great expense.

For smaller infrastructures where it is not yet neces-
sary to use a service mesh tool, it may make sense to use
an API gateway. The same applies to infrastructures that
have to get by without Kubernetes. It is often sufficient
to start with a small gateway solution and only later
switch to the full range of functions of an API gateway.
With growing service landscapes, it will probably not be
possible to do without the further advantages of Istio.
But then the question arises again whether you can man-
age with Istio alone and whether you can or want to do
without the functions of the API gateway.

It depends!

Michael Hofmann is a freelance consultant, coach,
speaker, and author. He has extensive project experi-
ence in software architecture, Java Enterprise, and
DevOps in both German and international environ-
ments.

Links & References

[1] https://martinfowler.com/articles/richardsonMaturityModel.html

Microproducts: Managing
Microservices as API Products
Erik Wilde (Freelancer)

Microservices are making services
individually evolvable by using self-con-
tained capabilities that can be created,
deployed, and modified in a standalone
way. They do this by only being usable

through their own API and by only using other
services through their APIs. In order for microservices
to reach their full potential it is important to conceive
and manage them, and thus their API, as a product.
Such a microservice product can be called a micro-
product and it represents a digital building block in
the services that are the foundation for an organiza-
tion’s digital transformation. We dive into why this
matters and what it means to move from a microser-
vices to a microproduct mindset. This move encom-
passes API product management and a full lifecycle
perspective for each individual microservice.

http://www.apiconference.net
https://accounts.google.com
https://martinfowler.com/articles/richardsonMaturityModel.html
https://apiconference.net/api-management/microproducts-managing-microservices-as-api-products/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

23apiconference.net

WHITEPAPER JavaScript

by Golo Roden

The first part of this series introduced Node.js as a serv-
er-side runtime environment for JavaScript and showed
how to write a simple web server. In addition, the pack-
age management npm was introduced, which allows us
to easily install modules written by the community into
our own application. So, we already know some of the
basics, but the developed application still lacks mean-
ingful functionality.

This will change in this part of the series: The appli-
cation, which so far only launches a rudimentary web
server, is supposed to provide an API that can be used
to manage a task list. First, it is necessary to make some
technical preliminary considerations, because we must
define what exactly the application is supposed to do.
For example, the following functions are possible:

•	It must be possible to write down a new task. In the
simplest form, this task consists of only a title, which
must not be empty.

•	It must also be possible to call up a list of all tasks
that still need to be done, in order to see what still
needs doing.

•	Last but not least, it must be possible to check off a
completed task so that it is removed from the todo
list.

These three functions are essential, without them a task
list cannot be used meaningfully. All other functions,
such as renaming a task or undoing the check-off of a

task, are optional. Of course, it would make sense to
implement them in order to make the application as
user-friendly and convenient as possible – but they are
not really necessary. The three functions mentioned
above represent the scope of a Minimum Viable Product
(MVP), so to speak.

Another restriction should be specified right at the
beginning: The task list shall deliberately not have user
management in order to keep the example manageable.
This means that there will be neither authentication
nor authorization, and it will not be possible to man-
age multiple task lists for different people. This would

Listing 1
'use strict';

const getApp = require('./lib/getApp');
const http = require('http');
const { processenv } = require('processenv');

const port = processenv('PORT', 3000);

const server = http.createServer(getApp());

server.listen(port);

Intro to Node.js part 2

Developing Web
APIs with Node
One of the most common uses of Node.js is the development of web APIs.
Numerous modules from the community are available for this, covering a
whole range of aspects, such as routing, validation, and CORS.

http://www.apiconference.net
http://Node.js
http://Node.js
http://Node.js

24apiconference.net

WHITEPAPER JavaScript

be essential to use the application in production, but it
is beyond the scope of this article and ultimately offers
little learning for Node.js.

Current state
The current state of the application we wrote in the
first part includes two code files: app. js, which starts
the actual server, and lib/getApp.js, which contains the
functionality to respond to requests from the outside. In
the app.js file, we already used the npm module proces-
senv [1] to be able to set the port to a value other than
the default 3000 via an environment variable (Listing 1).

The good news is that at this point, nothing will
change in this file. This is because there is already a sepa-
ration of content in the app.js and getApp.js files: The
first file takes care of the HTTP server itself, while the
second contains the actual logic of the application. In
this part of the article series, only the application logic
will be adapted and extended, so the app.js file can re-
main as it is.

However, the situation is different in the getApp.js file,
where we will leave no stone unturned. But, one thing
at a time. First, the package.json file must be modified
so that the name of the application is more meaningful.
For example, instead of my-http-server, the application
could be called tasklist:

{
 "name": "tasklist",
 "version": "0.0.1",
 "dependencies": {
 "processenv": "3.0.2"
 }
}

The file and directory structure of the application still
looks the same as in the first part:

/
 lib/

 getApp.js
 node_modules/
 app.js
 package.json
 package-lock.json

REST? No thanks!
Now it’s a matter of incorporating routing. As usual
with APIs, this is done via different paths in the URLs.
In addition, you can fall back on the different HTTP
verbs such as GET and POST to map different actions.
A common pattern is the so-called REST approach,
which specifies that so-called resources are defined via
the URL and the HTTP verbs define the actions on these
resources. The usual mapping according to REST is as
follows:

•	POST creates a new resource, and corresponds to
a Create.

•	GET retrieves a resource, and represents the clas-
sic Read.

•	PUT updates a resource, and corresponds to an Up-
date.

•	DELETE finally deletes a resource, and corresponds
to a Delete.

As you can see, these four HTTP verbs can be easily
mapped to four actions of the so-called CRUD pattern,
which in turn corresponds to the common approach of
how to access data in (relational) databases. This is one
of the most important reasons for the success of REST:
It is simple and builds on the already familiar logic of
databases. Nevertheless, there are some reasons against
using this transfer of CRUD to the API level. The most
weighty of these is that the verbs do not conform to the
technical language: Users do not talk about creating or
updating a task.

Instead, they think in terms of technical processes:
They want to make a note of a task or check off a task
as completed. This is where a business and a technical
view collide. It is obvious that a mapping between these
views must take place at some point – but the code of an
application should tend to be structured in a domain-
oriented rather than a technical way [2]. After all, the
application is written to solve a domain-oriented prob-
lem, and technology is merely the means to an end. Seen
in this light, CRUD is also an antipattern [3].

An alternative approach is provided by the CQRS
pattern, which is based on commands and queries [4].
A command is an action that changes the state of the
application and reflects a user’s intention. A command
is usually in the imperative, since it is a request to the
application to do something. In the context of the task
list, there are two actions that change the state of the
list, noting and checking off a task. If we formulate these
actions in the imperative and translate them into Eng-
lish, we get phrases such as “Note a todo.”, “Tick off
a todo.”

Web Push Notifications Done Right
Maxim Salnikov (Microsoft)

Finally, the Web Push API is available for
all major browsers and platforms. It’s a
feature that can take your users’ experi-
ence to the next level or...ruin it! In my
session, first, we will have a tech intro

about how Web Push works. Then we’ll explore how
to implement smart permission request dialogues,
various types of notifications themselves, and how to
communicate with your app for more sophisticated
scenarios – all done right, with the best possible UX.

http://www.apiconference.net
http://Node.js
http://getApp.js
http://app.js
http://app.js
http://getApp.js
http://app.js
http://getApp.js
http://getApp.js
http://app.js
https://apiconference.net/api-development/web-push-notifications/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

25apiconference.net

WHITEPAPER JavaScript

Analogously, you can formulate a query, i.e. a query
that doesn’t change the state of the application, but re-
turns it. This is the difference between a command and
a query: A command writes to the application, so to
speak, while a query reads from the application. The
CQRS pattern states that every interaction with an ap-
plication should be either a command or a query – but
never both at the same time. In particular, this means
that Commands should not return the current state of
the task list, but that a separate Query is needed for that:
For example: “Get pending todos.”

If we abandon the idea that an API must always be
structured according to REST and prefer the much sim-
pler pattern of separating writing and reading, the ques-
tion arises as to how the URLs should be structured and
which HTTP verbs should be used. In fact, the answer
to this question is surprisingly simple: The URLs are
formulated exactly as mentioned above, POST for com-
mands, and GET for queries are used as HTTP verbs –
that’s it. This results in the following routes:

•	POST /note-todo
•	POST /tick-off-todo
•	GET /pending-todos

The beauty of this approach is that it is much more self-
explanatory than REST. POST /tick-off-todo is much
more technical than a PUT /todo. Here, it is clear that
an update is executed, but which functional purpose
this update has is unclear. When there are different rea-
sons for initiating a (technical) update, the semantically
stronger approach gains a lot in comprehensibility and
traceability.

Define routes
Now it is necessary to define the appropriate routes.
However, this is not done with Node.js’s on-board
tools. Instead, we can use the npm module Express [5]:

$ npm install express
$ npm install express

The module can now be loaded and used within
the getApp.js file. First, an express application has to
be defined, for which only the express function has to
be called. Then, the get and post functions can be used
to define routes, specifying the desired path name and a
callback – similar to the one used in the standard Node.
js server (Listing 2).

With this, the basic framework for the routes is al-
ready built. The individual routes can, of course, also be
swapped out into independent files, but for the time be-
ing, focus should be on implementing functionality. The
next step is to implement a task list, which is initially
designed as a pure in-memory solution. However, since
it will be backed by a database in a future part of this se-
ries, it will be designed from the outset to be seamlessly
extensible later. Essentially, this means that all functions
to access the task list will be created asynchronously,
since accesses to databases in Node.js are usually asyn-
chronous. For the same reason, an asynchronous initial-
ize function is also created, which may seem unnecessary
at this stage, but will later be used to establish the data-
base connection.

Defining the todo list
The easiest way to do this is to use a class called To-
dos, to which corresponding methods are attached.
Again, these methods should be named functionally and
not technically, i.e. their names should be based on the
names of the routes of the API. The class is placed in a
new file in the lib directory, resulting in lib/Todos.js as
the file name. For each task that is noted, an ID should
also be generated, and the time of creation should be
noted. While accessing the current time is not a prob-
lem, generating an ID requires recourse to an external
module such as uuid, which can also be installed via
npm:

$ npm install uuid

Last but not least, it is advisable to get into the habit
from the very beginning of providing every .js file with

Listing 2
'use strict';

const express = require('express');

const getApp = function () {
 const app = express();

 app.post('/note-todo', (req, res) =&amp;amp;gt; {
 // ...
 });

 app.post('/tick-off-todo', (req, res) =&amp;amp;gt; {
 // ...
 });

 app.get('/pending-todos', (req, res) =&amp;amp;gt; {
 // ...
 });

 return app;
};

module.exports = getApp;

http://www.apiconference.net
http://Node.js
http://getApp.js
http://Node.js
http://Node.js
http://Node.js
http://Todos.js

26apiconference.net

WHITEPAPER JavaScript

strict mode, a special JavaScript execution mode in
which some dangerous language constructs are not al-
lowed, for example, the use of global variables. To en-
able the mode, you need to insert the appropriate string
at the beginning of a file as a kind of statement. This
makes the full contents of the app.js file look like the one
shown in Listing 1.

It is striking in the implementation that the functions
representing a command actually contain no return,

Listing 3
'use strict';

const { v4 } = require('uuid');

class Todos {
 constructor () {
 this.items = [];
 }

 async initialize () {
 // Intentionally left blank.
 }

 async noteTodo ({ title }) {
 const id = v4();
 const timestamp = Date.now();

 const todo = {
 id,
 timestamp,
 title
 };

 this.items.push(todo);
 }

 async tickOffTodo ({ id }) {
 const todoToTickOff = this.items.find(item =&amp;amp;gt; item.
id === id);

 if (!todoToTickOff) {
 throw new Error('Todo not found.');
 }

 this.items = this.items.filter(item =&amp;amp;gt; item.id !== id);
 }

 async getPendingTodos () {
 return this.items;
 }
}

module.exports = Todos;

Listing 4
'use strict';

const express = require('express');
const Todos = require('./Todos');

const getApp = async function () {
 const todos = new Todos();
 await todos.initialize();

 const app = express();

 app.post('/note-todo', async (req, res) =&amp;amp;gt; {
 const title = // ...

 await todos.noteTodo({ title });
 });

 app.post('/tick-off-todo', async (req, res) =&amp;amp;gt; {
 const id = // ...

 await todos.tickOffTodo({ id });
 });

 app.get('/pending-todos', async (req, res) =&amp;amp;gt; {
 const pendingTodos = await todos.getPendingTodos();

 // ...
 });

 return app;
};

module.exports = getApp;

http://www.apiconference.net
http://app.js
http://item.id
http://item.id
http://item.id

27apiconference.net

WHITEPAPER JavaScript

while the function representing a query consists of only
a single return. The separation between writing and
reading has become very clear.

Now the file getApp.js can be extended accordingly,
so that an instance of the task list is created there and
the routes are adapted in such a way that they call the
appropriate functions. To prepare the code for later,
the initialize function should be called now. However,
since this is marked as async, the getApp function must
call it with the await keyword, and therefore, must also
be marked as asynchronous (Listing 4).

Before the application can be executed, three things
have to be done:

•	First, the title and id parameters must be determined
from the request body.

•	Second, the query route must return the read tasks to
the client as a JSON array.

•	Finally, the app.js file must be modified so that
the getApp function is called asynchronously there.

Input and output with JSON
Fortunately, all three tasks are easy to accomplish. For
the first task, it is first necessary to determine what a
request from the client looks like, i.e. what form it takes.

In practice, it has proven useful to send the payload as
part of a JSON object in the request body. For the server,
this means that it must read this object from the request
body and parse it. A suitable module called body-parser
[6] is available in the community for this purpose and
can be easily installed using npm:

$ npm install body-parser

It should be noted that the version number must al-
ways consist of three parts and follow the concept
of semantic versioning [6]. In addition, however, de-
pendencies can also be stored in this file, whereby re-
quired third-party modules are explicitly added. This
makes it much easier to restore a certain state later or
to get an overview of which third-party modules an
application depends on. To install a module, call npm
as follows:

$ npm install processenv

It can then be loaded with require:

const bodyParser = require('body-parser');

Since the parser will be available for several routes, it
is implemented as so-called middleware. In the context
of Express, middleware is a type of plug-in that pro-
vides functionality for all routes and therefore only
needs to be registered once instead of individually for
each route. This is done in Express via the app.use func-
tion. Therefore, it is important to insert the following
line directly after creating the Express application: app.
use(bodyParser.json());

Now the property body of the req object can be ac-
cessed within the routes, which was not available be-
fore. Provided a valid JSON object was submitted, this
property now contains that very object. This allows the

Listing 5
app.post('/note-todo', async (req, res) =&amp;gt; {
 const { title } = req.body;

 await todos.noteTodo({ title });
});

app.post('/tick-off-todo', async (req, res) =&amp;gt; {
 const { id } = req.body;

 await todos.tickOffTodo({ id });
});

Listing 6
app.post('/tick-off-todo', async (req, res) =&amp;gt; {
 const { id } = req.body;

 try {
 await todos.tickOffTodo({ id });
 } catch {
 res.status(404).end();
 }
});

Postman Uncloaked
Jeroen Keppens (Exocoder)

More and more, testing APIs is gaining
importance. Postman has been the go-to
tool for many, but at the same time, most
developers have only scratched the
surface of what’s possible. In this talk,

we will go deeper into using postman for API testing.
We will start with a small intro on creating requests
and environments and how to use Postman in teams.
Then we will look into writing advanced automated
tests in Postman and shed some light on using the
Postman mock server technology. As a bonus, we’ll
also briefly touch upon flows.

http://www.apiconference.net
http://getApp.js
http://app.js
https://apiconference.net/api-development/postman-uncloaked/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23

28apiconference.net

WHITEPAPER JavaScript

two command routes to be extended, as shown in List-
ing 5.

When implementing the tick-off-todo route, it is no-
ticeable that error handling is still missing: If the task
to be ticked off is not found, the tickOffTodo function
of the Todos class raises an exception – but this is not
caught at the moment. So it is still necessary to provide
the corresponding call with a try/catch and to return a
corresponding HTTP status code in case of an error. In
this case, the error code 404, which stands for an ele-
ment not found (Listing 6), is a good choice.

And finally, in addition to the node_modules di-
rectory, npm has also created a file called package-
lock.json. It is actually used to lock version numbers
despite the roof being specified. However, it has its
quirks, so if npm behaves strangely, it’s often a good
idea to delete this file and the node_modules directory
and run npm install again from scratch. Once a mod-
ule has been installed via npm, it can be loaded in the
same way as a module built into Node.js. In that case,
Node.js recognizes that it is not a built-in module and
loads the appropriate code from the node_modules di-
rectory:

app.get('/pending-todos', async (req, res) =&amp;gt; {
 const pendingTodos = await todos.getPendingTodos();

 res.json(pendingTodos);
});

Now, if you start the server by entering node app.js and
try to call some routes, you will notice that some of the
routes work as desired – but others do not, because they
never end. This is where an effect comes into play that
is very unusual at first: Node.js is inherently designed to
stream data, so an HTTP connection is not automati-

Listing 7
'use strict';

const bodyParser = require('body-parser');
const express = require('express');
const Todos = require('./Todos');

const getApp = async function () {
 const todos = new Todos();
 await todos.initialize();

 const app = express();
 app.use(bodyParser.json());

 app.post('/note-todo', async (req, res) =&amp;gt; {
 const { title } = req.body;

 await todos.noteTodo({ title });
 res.status(200).end();
 });

 app.post('/tick-off-todo', async (req, res) =&amp;gt; {
 const { id } = req.body;

 try {
 await todos.tickOffTodo({ id });
 res.status(200).end();
 } catch {
 res.status(404).end();
 }
 });

 app.get('/pending-todos', async (req, res) =&amp;gt; {
 const pendingTodos = await todos.getPendingTodos();

 res.json(pendingTodos);
 });

 return app;
};

module.exports = getApp;

Listing 8
const noteTodoSchema = new Value({
 type: 'object',
 properties: {
 title: { type: 'string', minLength: 1 }
 },
 required: ['title'],
 additionalProperties: false
});

const tickOffTodoSchema = new Value({
 type: 'object',
 properties: {
 id: { type: 'string', format: 'uuid' }
 },
 required: ['id'],
 additionalProperties: false
});

http://www.apiconference.net
http://Node.js
http://Node.js
http://app.js
http://Node.js

29apiconference.net

WHITEPAPER JavaScript

cally closed when a route has been processed. Instead,
it has to be done explicitly, as in the case of the 404 er-
ror. The json function already does this natively, but the
two command routes still lack closing the connection
successfully. To indicate that the operation was success-
ful, it is a good idea to send the HTTP status code 200.
The getApp.js file now looks like Listing 7.

Validate the inputs
What is still missing is a validation of the inputs: At the
moment, it is quite possible to call one of the command
routes without passing the required parameters in the
request body. In practice, it has proven useful to vali-
date JSON objects by using a JSON schema. A JSON
schema represents a description of the valid structure of
a JSON object. In order to be able to use JSON schemas,
a module is again required, for example, validate-value
[7] which can be installed via npm:

$ npm install validate-value

Now the module can be loaded in the getApp.js file:

const { Value } = require('validate-value');

The next step is to create two schemas. Since these are
always the same, it is advisable not to do this inside the
routes, but outside them, so that the code does not have
to be executed over and over again, ultimately ending up
with the same result each time (Listing 8).

Within the two command routes, the only thing left
to do is to validate the received data using the respective
schema, and in case of an error, return an appropriate
HTTP status code, for example, a 400 error (Listing 9).

CORS and testing
With this the API is almost finished, only a little bit of
small stuff is missing. For example, it would be handy to
be able to configure CORS – that is, from which clients
the server can be accessed. In practice, this topic is a bit
more complex than described below, but for develop-
ment purposes, it is often sufficient to allow access from
everywhere. The best way to do this is to use the npm
module cors [8], which must first be installed via npm:

$ npm install cors

It must then be loaded, which is again done in the
getApp.js file:

const cors = require('cors');

Finally, it must be integrated into the express application
in the same way as body-parser, because this module is
also middleware. Whether this call is made before or after
the body-parser does not really matter – but since access
should be denied before the request body is processed, it
makes sense to include cors as the first middleware:

// ...
const app = express();
app.use(cors());
app.use(bodyParser.json());
// ...

Now, in order to test the API, a client is still missing. De-
veloping this right now would be too time-consuming,
so you can fall back on a tool that is extremely practical
for testing HTTP APIs and that is usually pre-installed
on macOS and Linux, namely, curl. On Windows, it is
also available, at least in the Windows Subsystem for
Linux (WSL). First, you can try to retrieve the (initially
empty) list of all tasks:

$ curl http://localhost:3000/pending-todos
[]

In the next step, you can now add a task. Make sure
that you not only send the required data, but also set the
Content-Type header to the correct value – otherwise
the body-parser will not be active:

Listing 9
app.post('/note-todo', async (req, res) =&amp;gt; {
 if (!noteTodoSchema.isValid(req.body)) {
 return res.status(400).end();
 }

 const { title } = req.body;

 await todos.noteTodo({ title });
 res.status(200).end();
});

app.post('/tick-off-todo', async (req, res) =&amp;gt; {
 if (!tickOffTodoSchema.isValid(req.body)) {
 return res.status(400).end();
 }

 const { id } = req.body;

 try {
 await todos.tickOffTodo({ id });
 res.status(200).end();
 } catch {
 res.status(404).end();
 }
});

http://www.apiconference.net
http://getApp.js
http://getApp.js
http://getApp.js

30apiconference.net

WHITEPAPER JavaScript

$ curl \
 -X POST \
 -H 'content-type:application/json' \
 -d '{"title":"Develop a Client"}' \
 http://localhost:3000/note-todo

If you retrieve the tasks again, you will get a list with
one entry (in fact, the list would be output unformatted
in a single line, but for the sake of better readability it is
shown formatted in the following):

$ curl http://localhost:3000/pending-todos
[
 {
 "id": "dadd519b-71ec-4d18-8011-acf021e14365",
 "timestamp": 1601817586633,
 "title": "Develop a Client"
 }
]

If you try to check off a task that does not exist, you will
notice that this has no effect on the list of all tasks. How-
ever, if you use the -i parameter of curl to also output the
HTTP headers, you will see that you get the value 404 as
the HTTP status code:

$ curl \
 -i \
 -X POST \
 -H 'content-type:application/json' \
 -d '{"id":"43445c25-c116-41ef-9075-7ef0783585cb"}' \
 http://localhost:3000/tick-off-todo

The same applies if you do not pass a UUID as a pa-
rameter (or specify an empty title in the previous exam-
ple). However, in these cases, you get the HTTP status

New Features in Node.js Versions
And How They Can Boost Your Appli-
cation Performance And Monitoring
Tamar Stern (XM Cyber)

Node.js has a nonblocking IO architec-
ture with an event loop, and the V8
engine is a very important component in
the Node.js architecture. This architec-
ture has limitations and as Node.js

versions become more advanced, more and more
features are being added to the language to over-
come those hurdles. In this talk, Tamar will focus on
new features that were added in new Node.js
versions and how those features can improve our
application performance.

code 400. Last but not least, you can now try to actually
check off the noted task by passing the correct ID:

$ curl \
 -X POST \
 -H 'content-type:application/json' \
 -d '{"id":"dadd519b-71ec-4d18-8011-acf021e14365"}' \
 http://localhost:3000/tick-off-todo

If you retrieve the list of all unfinished tasks again, you
will get an empty list

– as desired:

$ curl http://localhost:3000/pending-todos
[]

Outlook
This concludes the second part of this series on Node.js.
Of course, there is much more to discover in the context
of Node.js and Express for writing Web APIs. Another
article could be dedicated to the topics of authentication
and authorization alone. But now we have a foundation
to build upon.

The biggest shortcoming of the application at the mo-
ment is that it is not possible to ensure code quality and
the code has already become relatively confusing. There
is a lack of structure, binding specifications regarding
the code style, and automated tests. These topics will be
dealt with in the third part of the series – before further
functionality can be added.

The author’s company, the native web GmbH, offers
a free video course on Node. js [9] with close to 30 hours
of playtime. Episodes 4 and 5 of this video course deal
with topics covered in this article, such as developing
web APIs, using Express, and using middleware. There-
fore, this course is recommended for anyone interested
in more details.

Golo Roden is founder and CTO of the native web
GmbH. He advises companies on technologies and ar-
chitectures in the web and cloud environment, includ-
ing TypeScript, Node.js, React, CQRS, event sourcing
and Domain-Driven Design (DDD).

Web: www.thenativeweb.io

Links & References

[1]	 https://www.npmjs.com/package/processenv

[2]	 https://www.youtube.com/watch?v=YmzVCSUZzj0

[3]	 https://www.youtube.com/watch?v=frUNFrP7C9w

[4]	 https://www.youtube.com/watch?v=k0f3eeiNwRA

[5]	 https://www.npmjs.com/package/express

[6]	 https://www.npmjs.com/package/body-parser

[7]	 https://www.npmjs.com/package/validate-value

[8]	 https://www.npmjs.com/package/cors

[9]	 https://www.thenativeweb.io/learning/techlounge-nodejs

http://www.apiconference.net
https://javascript-conference.com/node-js/node-js-application-performance-monitoring/?utm_source=pdf&utm_medium=referral&utm_campaign=api_content-wp1.23
http://Node.js
http://Node.js
http://Node.js
http://Node.js
http://Node.js
http://Node.js
http://Node.js
http://Node.js
http://www.thenativeweb.io
https://www.npmjs.com/package/processenv
https://www.youtube.com/watch?v=YmzVCSUZzj0
https://www.youtube.com/watch?v=frUNFrP7C9w
https://www.youtube.com/watch?v=k0f3eeiNwRA
https://www.npmjs.com/package/express
https://www.npmjs.com/package/body-parser
https://www.npmjs.com/package/validate-value
https://www.npmjs.com/package/cors
https://www.thenativeweb.io/learning/techlounge-nodejs

	Contents
	API Contract Definitions
	"Most organisations are not prepared for the scale of security breaches to come."
	What the James Webb Space
Telescope Can Teach Us About Engineering APIs
	Preventing Data Infrastructure Sprawl – What
Developers Can Do
	Freedom of Choice with Apache
Cassandra and
Stargate
	The Role of APIs in Digital Government Context
	API Gateway or Just a Service Mesh Tool?
	Developing Web APIs with Node

